Si A est un opérateur positif tel que la partie positive de vérifie , alors A est une somme de projections de rangs infinis. Ce résultat, obtenu en 2009 par Kalftal, Ng et Zhang, est étendu dans cette note aux sommes dʼopérateurs Murray–von Neumann équivalents à une contraction positive arbitraire.
Let A, B be two Hilbert space positive operators such that and the positive part of satisfies . Then , where for all n. ( means and .) This extends a 2009 result of Kaftal, Ng, and Zhang for sums of projections.
Accepté le :
Publié le :
@article{CRMATH_2013__351_19-20_761_0, author = {Bourin, Jean-Christophe and Lee, Eun-Young}, title = {Sums of {Murray{\textendash}von} {Neumann} equivalent operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {761--764}, publisher = {Elsevier}, volume = {351}, number = {19-20}, year = {2013}, doi = {10.1016/j.crma.2013.09.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/} }
TY - JOUR AU - Bourin, Jean-Christophe AU - Lee, Eun-Young TI - Sums of Murray–von Neumann equivalent operators JO - Comptes Rendus. Mathématique PY - 2013 SP - 761 EP - 764 VL - 351 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/ DO - 10.1016/j.crma.2013.09.019 LA - en ID - CRMATH_2013__351_19-20_761_0 ER -
%0 Journal Article %A Bourin, Jean-Christophe %A Lee, Eun-Young %T Sums of Murray–von Neumann equivalent operators %J Comptes Rendus. Mathématique %D 2013 %P 761-764 %V 351 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/ %R 10.1016/j.crma.2013.09.019 %G en %F CRMATH_2013__351_19-20_761_0
Bourin, Jean-Christophe; Lee, Eun-Young. Sums of Murray–von Neumann equivalent operators. Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 761-764. doi : 10.1016/j.crma.2013.09.019. http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/
[1] Compressions and pinchings, J. Oper. Theory, Volume 50 (2003) no. 2, pp. 211-220
[2] Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102
[3] Decomposition and partial trace of positive matrices with Hermitian blocks, Int. J. Math., Volume 24 (2013) no. 1, p. 1350010 (13 p)
[4] Ellipsoidal tight frames and projection decompositions of operators, III, J. Math., Volume 48 (2004), pp. 477-489
[5] Strong sums of projections in von Neumann factors, J. Funct. Anal., Volume 257 (2009), pp. 2497-2529
[6] Projection decomposition in multiplier algebras, Math. Ann., Volume 352 (2012) no. 3, pp. 543-566
Cité par Sources :