Functional analysis
Sums of Murray–von Neumann equivalent operators
[Sommes dʼopérateurs Murray–von Neumann équivalents]
Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 761-764.

Si A est un opérateur positif tel que la partie positive de AI vérifie Tr(AI)+=, alors A est une somme de projections de rangs infinis. Ce résultat, obtenu en 2009 par Kalftal, Ng et Zhang, est étendu dans cette note aux sommes dʼopérateurs Murray–von Neumann équivalents à une contraction positive arbitraire.

Let A, B be two Hilbert space positive operators such that 1B0 and the positive part of AI satisfies Tr(AI)+=. Then A=n=1Bn, where BnB for all n. (XY means X=TT and Y=TT.) This extends a 2009 result of Kaftal, Ng, and Zhang for sums of projections.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.09.019
Bourin, Jean-Christophe 1 ; Lee, Eun-Young 2

1 Laboratoire de mathématiques, Université de Franche-Comté, 25000 Besançon, France
2 Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
@article{CRMATH_2013__351_19-20_761_0,
     author = {Bourin, Jean-Christophe and Lee, Eun-Young},
     title = {Sums of {Murray{\textendash}von} {Neumann} equivalent operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {761--764},
     publisher = {Elsevier},
     volume = {351},
     number = {19-20},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/}
}
TY  - JOUR
AU  - Bourin, Jean-Christophe
AU  - Lee, Eun-Young
TI  - Sums of Murray–von Neumann equivalent operators
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 761
EP  - 764
VL  - 351
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/
DO  - 10.1016/j.crma.2013.09.019
LA  - en
ID  - CRMATH_2013__351_19-20_761_0
ER  - 
%0 Journal Article
%A Bourin, Jean-Christophe
%A Lee, Eun-Young
%T Sums of Murray–von Neumann equivalent operators
%J Comptes Rendus. Mathématique
%D 2013
%P 761-764
%V 351
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/
%R 10.1016/j.crma.2013.09.019
%G en
%F CRMATH_2013__351_19-20_761_0
Bourin, Jean-Christophe; Lee, Eun-Young. Sums of Murray–von Neumann equivalent operators. Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 761-764. doi : 10.1016/j.crma.2013.09.019. http://www.numdam.org/articles/10.1016/j.crma.2013.09.019/

[1] Bourin, J.-C. Compressions and pinchings, J. Oper. Theory, Volume 50 (2003) no. 2, pp. 211-220

[2] Bourin, J.-C.; Lee, E.-Y. Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102

[3] Bourin, J.-C.; Lee, E.-Y. Decomposition and partial trace of positive matrices with Hermitian blocks, Int. J. Math., Volume 24 (2013) no. 1, p. 1350010 (13 p)

[4] Dykema, K.; Freeman, D.; Kornelson, K.; Larson, D.; Ordower, M.; Weber, E. Ellipsoidal tight frames and projection decompositions of operators, III, J. Math., Volume 48 (2004), pp. 477-489

[5] Kaftal, V.; Ng, P.W.; Zhang, S. Strong sums of projections in von Neumann factors, J. Funct. Anal., Volume 257 (2009), pp. 2497-2529

[6] Kaftal, V.; Ng, P.W.; Zhang, S. Projection decomposition in multiplier algebras, Math. Ann., Volume 352 (2012) no. 3, pp. 543-566

Cité par Sources :