Dans cette note, nous construisons un modèle de type ES–BGK pour des mélanges inertes, qui soit capable de donner un nombre de Prandl correct, correspondant à celui obtenu à partir de lʼéquation de Boltzmann. Le principe de construction est basé sur un principe de minimisation de lʼentropie sous contraintes, en introduisant une relaxation de certains moments non conservés. On obtient ainsi un modèle BGK capable de restituer un bon nombre de Prandtl dans certaines situations. De plus, le modèle construit vérifie les propriétés classiques satisfaites par lʼopérateur de Boltzmann pour les mélanges de gaz inertes.
In this note, we derive an ES–BGK model for gas mixtures that is able to give the correct Prandtl number obtained from the true Boltzmann equation. The derivation principle is based on the resolution of an entropy minimisation problem under moments constraints. The set of constraints is constructed by introducing a relaxation of some non-conserved moments. The non-conserved moments are dissipated according to some relaxation rates. Finally the BGK model that is obtained satisfies the classical properties of the Boltzmann operator for inert gas mixtures.
Accepté le :
Publié le :
@article{CRMATH_2013__351_19-20_775_0, author = {Brull, St\'ephane}, title = {Un mod\`ele {ES{\textendash}BGK} pour des m\'elanges de gaz}, journal = {Comptes Rendus. Math\'ematique}, pages = {775--779}, publisher = {Elsevier}, volume = {351}, number = {19-20}, year = {2013}, doi = {10.1016/j.crma.2013.04.006}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.04.006/} }
TY - JOUR AU - Brull, Stéphane TI - Un modèle ES–BGK pour des mélanges de gaz JO - Comptes Rendus. Mathématique PY - 2013 SP - 775 EP - 779 VL - 351 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.04.006/ DO - 10.1016/j.crma.2013.04.006 LA - fr ID - CRMATH_2013__351_19-20_775_0 ER -
Brull, Stéphane. Un modèle ES–BGK pour des mélanges de gaz. Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 775-779. doi : 10.1016/j.crma.2013.04.006. http://www.numdam.org/articles/10.1016/j.crma.2013.04.006/
[1] A consistent BGK-type model for gas mixtures, J. Stat. Phys., Volume 106 (2002) no. 5/6, pp. 993-1018
[2] Entropy condition for the ES BGK model of Boltzmann equation for mono and polyatomic gases, Eur. J. Mech. B, Fluids, Volume 19 (2000), pp. 813-830
[3] S. Brull, An ES–BGK model for gas mixtures, Comm. Math. Sci., à paraître.
[4] A new approach of the Ellipsoidal Statistical Model, Contin. Mech. Thermodyn., Volume 20 (2008) no. 2, pp. 63-74
[5] On the Ellipsoidal Statistical Model for polyatomic gases, Contin. Mech. Thermodyn., Volume 20 (2009) no. 8, pp. 489-508
[6] Derivation of BGK models for mixtures, Eur. J. Mech. B, Fluids, Volume 33 (2012), pp. 74-86
[7] New statistical models for kinetic theory: methods of construction, Phys. Fluids, Volume 9 (1966), pp. 1658-1673
[8] Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 7, pp. 1001-1025
[9] Model Boltzmann equation for gas mixtures: Construction and numerical comparison, Eur. J. Mech. B, Fluids (2009), pp. 170-184
[10] Moment closure hierarchies for kinetic theories, J. Stat. Phys., Volume 83 (1996) no. 5–6, pp. 1021-1065
Cité par Sources :