On étudie le problème non linéaire
We study the nonlinear problem
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_187_0, author = {Bonanno, Gabriele and Molica Bisci, Giovanni and R\u{a}dulescu, Vicen\c{t}iu}, title = {Infinitely many solutions for a class of nonlinear elliptic problems on fractals}, journal = {Comptes Rendus. Math\'ematique}, pages = {187--191}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.027}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2012.01.027/} }
TY - JOUR AU - Bonanno, Gabriele AU - Molica Bisci, Giovanni AU - Rădulescu, Vicenţiu TI - Infinitely many solutions for a class of nonlinear elliptic problems on fractals JO - Comptes Rendus. Mathématique PY - 2012 SP - 187 EP - 191 VL - 350 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.01.027/ DO - 10.1016/j.crma.2012.01.027 LA - en ID - CRMATH_2012__350_3-4_187_0 ER -
%0 Journal Article %A Bonanno, Gabriele %A Molica Bisci, Giovanni %A Rădulescu, Vicenţiu %T Infinitely many solutions for a class of nonlinear elliptic problems on fractals %J Comptes Rendus. Mathématique %D 2012 %P 187-191 %V 350 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.01.027/ %R 10.1016/j.crma.2012.01.027 %G en %F CRMATH_2012__350_3-4_187_0
Bonanno, Gabriele; Molica Bisci, Giovanni; Rădulescu, Vicenţiu. Infinitely many solutions for a class of nonlinear elliptic problems on fractals. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 187-191. doi : 10.1016/j.crma.2012.01.027. https://www.numdam.org/articles/10.1016/j.crma.2012.01.027/
[1] Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., Volume 2009 (2009), pp. 1-20
[2] G. Bonanno, G. Molica Bisci, V. Rădulescu, Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket, ESAIM Control Optim. Calc. Var., , in press. | DOI
[3] Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket, Anal. Appl., Volume 9 (2011), pp. 235-248
[4] Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2003
[5] Nonlinear elliptical equations on the Sierpiński gasket, J. Math. Anal. Appl., Volume 240 (1999), pp. 552-573
[6] On a spectral analysis for the Sierpiński gasket, Potential Anal., Volume 1 (1992), pp. 1-35
[7] Les objets fractals: forme, hasard et dimension, Flammarion, Paris, 1973
[8] A general variational principle and some of its applications, J. Comput. Appl. Math., Volume 113 (2000), pp. 401-410
[9] Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris, Volume 160 (1915), pp. 302-305
- Variational approaches to Dirichlet gradient-type systems on the Sierpiński gasket, Applicable Analysis, Volume 103 (2024) no. 14, p. 2591 | DOI:10.1080/00036811.2024.2302968
- Boundary value problems on part of a level-n Sierpinski gasket, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0781-1
- Nonlinear problems on the Sierpiński gasket, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 2, p. 883 | DOI:10.1016/j.jmaa.2017.03.032
- Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket, Journal of Optimization Theory and Applications, Volume 167 (2015) no. 3, p. 842 | DOI:10.1007/s10957-013-0368-7
- A note on gradient-type systems on fractals, Nonlinear Analysis: Real World Applications, Volume 21 (2015), p. 142 | DOI:10.1016/j.nonrwa.2014.07.004
- Sequences of Weak Solutions for Non-Local Elliptic Problems with Dirichlet Boundary Condition, Proceedings of the Edinburgh Mathematical Society, Volume 57 (2014) no. 3, p. 779 | DOI:10.1017/s0013091513000722
- Elliptic Problems on the Sierpinski Gasket, Topics in Mathematical Analysis and Applications, Volume 94 (2014), p. 119 | DOI:10.1007/978-3-319-06554-0_6
- Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpiński gasket, Chinese Annals of Mathematics, Series B, Volume 34 (2013) no. 3, p. 381 | DOI:10.1007/s11401-013-0772-1
- Infinitely many solutions for a Dirichlet boundary value problem depending on two parameters, Glasnik Matematicki, Volume 48 (2013) no. 2, p. 357 | DOI:10.3336/gm.48.2.09
- Infinitely Many Solutions for a Mixed Doubly Eigenvalue Boundary Value Problem, Mediterranean Journal of Mathematics, Volume 10 (2013) no. 3, p. 1317 | DOI:10.1007/s00009-013-0243-7
- Infinitely many solutions for a class of Dirichlet quasilinear elliptic systems, Journal of Mathematical Analysis and Applications, Volume 393 (2012) no. 1, p. 265 | DOI:10.1016/j.jmaa.2012.04.013
Cité par 11 documents. Sources : Crossref