Le but de cet article est de donner une condition suffisante pour quʼune fonction dans le domaine global de définition de lʼopérateur Monge–Ampère nʼappartienne pas au domaine local de celui-ci dans le sens de Cegrell, lorsquʼon se place sur un espace projectif complexe de dimension n. En utilisant ce résultat, nous montrons que le théorème de sous-solution est faux pour des fonctions dans le domaine local de définition de lʼopérateur Monge–Ampère sur un tel espace projectif.
The aim of this Note is to give a sufficient condition in order for a function in the global domain of definition of the Monge–Ampère operator not to belong to the local domain of the former in the sense of Cegrell, when one looks at the n-dimensional complex projective space. Using this result, we show that the subsolution theorem is false for functions in the local domain of definition of the Monge–Ampère operator on such a projective space.
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_153_0, author = {Hai, Le Mau and Hiep, Pham Hoang and Phu, Nguyen Van}, title = {Global and local definition of the {Monge{\textendash}Amp\`ere} operator on compact {K\"ahler} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {153--156}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/} }
TY - JOUR AU - Hai, Le Mau AU - Hiep, Pham Hoang AU - Phu, Nguyen Van TI - Global and local definition of the Monge–Ampère operator on compact Kähler manifolds JO - Comptes Rendus. Mathématique PY - 2012 SP - 153 EP - 156 VL - 350 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/ DO - 10.1016/j.crma.2012.01.025 LA - en ID - CRMATH_2012__350_3-4_153_0 ER -
%0 Journal Article %A Hai, Le Mau %A Hiep, Pham Hoang %A Phu, Nguyen Van %T Global and local definition of the Monge–Ampère operator on compact Kähler manifolds %J Comptes Rendus. Mathématique %D 2012 %P 153-156 %V 350 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/ %R 10.1016/j.crma.2012.01.025 %G en %F CRMATH_2012__350_3-4_153_0
Hai, Le Mau; Hiep, Pham Hoang; Phu, Nguyen Van. Global and local definition of the Monge–Ampère operator on compact Kähler manifolds. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 153-156. doi : 10.1016/j.crma.2012.01.025. http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/
[1] Monge–Ampère measures on pluripolar sets, J. Math. Pures Appl., Volume 92 (2009), pp. 613-627
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40
[3] Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217
[4] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179
[5] A general Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math., Volume 94 (2008), pp. 131-147
[6] Subextension of plurisubharmonic functions with weak singularities, Math. Z., Volume 250 (2005), pp. 7-22
[7] Maximal subextensions of plurisubharmonic functions, Ann. Fac. Sci. Toulouse, Math. (6), Volume 20 (2011) no. Special Issue, pp. 101-122
[8] Mesures de Monge–Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987), pp. 519-564
[9] Regularization of closed positive currents and intersection theory, J. Alg. Geom., Volume 1 (1992), pp. 361-409
[10] Monger–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993
[11] J.-P. Demailly, Complex analytic and differential geometry, self-published e-book, 1997.
[12] Uniqueness in , J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122
[13] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639
[14] The weighted Monge–Ampère energy of quasi-plurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482
[15] A comparison principle for the complex Monge–Ampère operator in Cegrellʼs classes and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5539-5554
[16] The Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117
[17] The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003), pp. 667-686
[18] The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005)
Cité par Sources :