Complex Analysis
Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
[Définition globale et locale de lʼopérateur de Monge–Ampère sur les variétés kählériennes compactes]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 153-156.

Le but de cet article est de donner une condition suffisante pour quʼune fonction dans le domaine global de définition de lʼopérateur Monge–Ampère nʼappartienne pas au domaine local de celui-ci dans le sens de Cegrell, lorsquʼon se place sur un espace projectif complexe de dimension n. En utilisant ce résultat, nous montrons que le théorème de sous-solution est faux pour des fonctions dans le domaine local de définition de lʼopérateur Monge–Ampère sur un tel espace projectif.

The aim of this Note is to give a sufficient condition in order for a function in the global domain of definition of the Monge–Ampère operator not to belong to the local domain of the former in the sense of Cegrell, when one looks at the n-dimensional complex projective space. Using this result, we show that the subsolution theorem is false for functions in the local domain of definition of the Monge–Ampère operator on such a projective space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.025
Hai, Le Mau 1 ; Hiep, Pham Hoang 1 ; Phu, Nguyen Van 2

1 Department of Mathematics, Hanoi National University of Education, Viet Nam
2 Department of Mathematics, Electric Power University, Hanoi, Viet Nam
@article{CRMATH_2012__350_3-4_153_0,
     author = {Hai, Le Mau and Hiep, Pham Hoang and Phu, Nguyen Van},
     title = {Global and local definition of the {Monge{\textendash}Amp\`ere} operator on compact {K\"ahler} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {153--156},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/}
}
TY  - JOUR
AU  - Hai, Le Mau
AU  - Hiep, Pham Hoang
AU  - Phu, Nguyen Van
TI  - Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 153
EP  - 156
VL  - 350
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/
DO  - 10.1016/j.crma.2012.01.025
LA  - en
ID  - CRMATH_2012__350_3-4_153_0
ER  - 
%0 Journal Article
%A Hai, Le Mau
%A Hiep, Pham Hoang
%A Phu, Nguyen Van
%T Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
%J Comptes Rendus. Mathématique
%D 2012
%P 153-156
%V 350
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/
%R 10.1016/j.crma.2012.01.025
%G en
%F CRMATH_2012__350_3-4_153_0
Hai, Le Mau; Hiep, Pham Hoang; Phu, Nguyen Van. Global and local definition of the Monge–Ampère operator on compact Kähler manifolds. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 153-156. doi : 10.1016/j.crma.2012.01.025. http://www.numdam.org/articles/10.1016/j.crma.2012.01.025/

[1] Åhag, P.; Cegrell, U.; Czyz, R.; Hiep, Pham Hoang Monge–Ampère measures on pluripolar sets, J. Math. Pures Appl., Volume 92 (2009), pp. 613-627

[2] Bedford, E.; Taylor, B.A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40

[3] Cegrell, U. Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217

[4] Cegrell, U. The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179

[5] Cegrell, U. A general Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math., Volume 94 (2008), pp. 131-147

[6] Cegrell, U.; Kołodziej, S.; Zeriahi, A. Subextension of plurisubharmonic functions with weak singularities, Math. Z., Volume 250 (2005), pp. 7-22

[7] Cegrell, U.; Kołodziej, S.; Zeriahi, A. Maximal subextensions of plurisubharmonic functions, Ann. Fac. Sci. Toulouse, Math. (6), Volume 20 (2011) no. Special Issue, pp. 101-122

[8] Demailly, J.-P. Mesures de Monge–Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987), pp. 519-564

[9] Demailly, J.-P. Regularization of closed positive currents and intersection theory, J. Alg. Geom., Volume 1 (1992), pp. 361-409

[10] Demailly, J.-P. Monger–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993

[11] J.-P. Demailly, Complex analytic and differential geometry, self-published e-book, 1997.

[12] Dinew, S. Uniqueness in E(X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122

[13] Guedj, V.; Zeriahi, A. Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639

[14] Guedj, V.; Zeriahi, A. The weighted Monge–Ampère energy of quasi-plurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482

[15] Khue, Nguyen Van; Hiep, Pham Hoang A comparison principle for the complex Monge–Ampère operator in Cegrellʼs classes and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5539-5554

[16] Kołodziej, S. The Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117

[17] Kołodziej, S. The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003), pp. 667-686

[18] Kołodziej, S. The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005)

Cité par Sources :