[Quelques propriétés des opérateurs de composition sur les séries de Dirichlet entières à fréquences réelles]
Dans cette Note nous considérons quelques problèmes concernant les opérateurs de composition sur une classe de séries de Dirichlet entières à fréquences réelles dans le plan complexe, dont lʼordre de Ritt est zéro, et dont les ordres logarithmiques sont finis. Nous donnons des critères dʼaction et de continuité pour de tels opérateurs.
In this Note we consider some problems for composition operators on a class of entire Dirichlet series with real frequencies in the complex plane whose Ritt order is zero and logarithmic orders are finite. Criteria for action and boundedness of such operators are given.
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_149_0, author = {Hou, Xiaolu and Khoi, Le Hai}, title = {Some properties of composition operators on entire {Dirichlet} series with real frequencies}, journal = {Comptes Rendus. Math\'ematique}, pages = {149--152}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.023}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.023/} }
TY - JOUR AU - Hou, Xiaolu AU - Khoi, Le Hai TI - Some properties of composition operators on entire Dirichlet series with real frequencies JO - Comptes Rendus. Mathématique PY - 2012 SP - 149 EP - 152 VL - 350 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2012.01.023/ DO - 10.1016/j.crma.2012.01.023 LA - en ID - CRMATH_2012__350_3-4_149_0 ER -
%0 Journal Article %A Hou, Xiaolu %A Khoi, Le Hai %T Some properties of composition operators on entire Dirichlet series with real frequencies %J Comptes Rendus. Mathématique %D 2012 %P 149-152 %V 350 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2012.01.023/ %R 10.1016/j.crma.2012.01.023 %G en %F CRMATH_2012__350_3-4_149_0
Hou, Xiaolu; Khoi, Le Hai. Some properties of composition operators on entire Dirichlet series with real frequencies. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 149-152. doi : 10.1016/j.crma.2012.01.023. http://www.numdam.org/articles/10.1016/j.crma.2012.01.023/
[1] Composition operators on spaces of entire functions, Proc. Amer. Math. Soc., Volume 135 (2007) no. 7, pp. 2205-2218
[2] Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995
[3] The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Volume 46 (1999) no. 2, pp. 313-329
[4] The General Theory of Dirichlet Series, Stechert–Hafner, Inc., New York, 1964
[5] Séries de Dirichlet. Principes et Méthodes, Monographies Internationales de Mathématiques Modernes, vol. 11, Gauthier–Villars, Paris, 1969
[6] On an integral function of an integral function, J. London Math. Soc., Volume 1 (1926) no. 2, p. 12
[7] On entire Dirichlet series of zero order, Tôhoku Math. J. (2), Volume 18 (1966), pp. 144-155
[8] On certain points in the theory of Dirichlet series, Amer. J. Math., Volume 50 (1928) no. 1, pp. 73-86
[9] Compositions Operators and Classical Function Theory, Springer-Verlag, New York, 1993
Cité par Sources :