Ordinary Differential Equations/Partial Differential Equations
Reduction method for studying localized solutions of neural field equations on the Poincaré disk
[Méthode de réduction pour lʼétude de solutions localisées dʼéquations de champs neuronaux posées sur le disque de Poincaré]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 161-166.

Dans cette Note, nous présentons une méthode de réduction pour lʼétude de solutions localisées dʼune équation intégro-différentielle définie sur le disque de Poincaré. Ce genre dʼéquation est relié au problème de modélisation des textures par le cortex visuel. Nous dérivons tout dʼabord une équation aux dérivées partielles équivalente à lʼéquation intégro-différentielle de départ et déduisons ensuite que les solutions qui sont radialement symétriques satisfont une équation différentielle ordinaire dʼordre 4.

We present a reduction method to study localized solutions of an integrodifferential equation defined on the Poincaré disk. This equation arises in a problem of texture perception modeling in the visual cortex. We first derive a partial differential equation which is equivalent to the initial integrodifferential equation and then deduce that localized solutions which are radially symmetric satisfy a fourth order ordinary differential equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.022
Faye, Grégory 1

1 NeuroMathComp Laboratory, INRIA, Sophia-Antipolis, 2004, route des Lucioles, BP 93, 06902 Sophia-Antipolis, France
@article{CRMATH_2012__350_3-4_161_0,
     author = {Faye, Gr\'egory},
     title = {Reduction method for studying localized solutions of neural field equations on the {Poincar\'e} disk},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {161--166},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.022/}
}
TY  - JOUR
AU  - Faye, Grégory
TI  - Reduction method for studying localized solutions of neural field equations on the Poincaré disk
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 161
EP  - 166
VL  - 350
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.022/
DO  - 10.1016/j.crma.2012.01.022
LA  - en
ID  - CRMATH_2012__350_3-4_161_0
ER  - 
%0 Journal Article
%A Faye, Grégory
%T Reduction method for studying localized solutions of neural field equations on the Poincaré disk
%J Comptes Rendus. Mathématique
%D 2012
%P 161-166
%V 350
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.022/
%R 10.1016/j.crma.2012.01.022
%G en
%F CRMATH_2012__350_3-4_161_0
Faye, Grégory. Reduction method for studying localized solutions of neural field equations on the Poincaré disk. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 161-166. doi : 10.1016/j.crma.2012.01.022. http://www.numdam.org/articles/10.1016/j.crma.2012.01.022/

[1] Amari, S.-I. Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, Volume 27 (June 1977) no. 2, pp. 77-87

[2] Bressloff, P.C. Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012), pp. 1-109

[3] Chossat, Pascal; Faugeras, Olivier Hyperbolic planforms in relation to visual edges and textures perception, Plos Comput. Biol., Volume 5 (December 2009) no. 12, p. e1000625

[4] Erdelyi Higher Transcendental Functions, vol. 1, Robert E. Krieger Publishing Company, 1985

[5] Faye, G.; Chossat, P.; Faugeras, O. Analysis of a hyperbolic geometric model for visual texture perception, The Journal of Mathematical Neuroscience, Volume 1 (2011) no. 4

[6] González, B.J.; Negrin, E.R. Mehler–Fock transforms of generalized functions via the method of adjoints, Proceedings of the American Mathematical Society, Volume 125 (1997), pp. 3243-3254

[7] Helgason, S. Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, 2000

[8] Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat visual cortex, J. Physiol., Volume 160 (1962), pp. 106-154

[9] Laing, Carlo R.; Troy, William C. PDE methods for nonlocal models, SIAM Journal on Applied Dynamical Systems, Volume 2 (2003) no. 3, pp. 487-516

[10] Lloyd, D.; Sandstede, B. Localized radial solutions of the Swift–Hohenberg equation, Nonlinearity, Volume 22 (2009), p. 485

[11] McCalla, S.; Sandstede, B. Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study, Physica D: Nonlinear Phenomena, Volume 239 (2010) no. 16, pp. 1581-1592

[12] Ryzhik, I.M.; Jeffrey, A.; Zwillinger, D. Table of Integrals, Series and Products, Academic Press, 2007

[13] Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., Volume 12 (1972), pp. 1-24

Cité par Sources :