Dynamical Systems
Robustness in biological regulatory networks II: Application to genetic threshold Boolean random regulatory networks (getBren)
[Robustesse dans les réseaux de régulation biologique II : Application aux réseaux génétiques de régulation booléens probabilistes à Seuil]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 225-228.

Un exemple important de réseaux de régulation biologique est constitué par les réseaux génétiques de régulation booléens probabilistes à seuil, qui sont très utiles pour expliquer les mécanismes précis du contrôle génétique, en particulier. Cette Note montre les relations mathématiques existant entre sensibilité paramétrique de lʼentropie évolutionnaire et frustration du réseau, dans le contexte particulier de ces réseaux de régulation génétique.

An important example of biological regulatory networks is constituted by the genetic threshold Boolean random regulatory networks (getBren), which are very useful for explaining the precise mechanisms of the genetic control. This article shows the mathematical relationships between parameter sensitivity of the evolutionary entropy and network frustration in the particular context of the getBrens.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.019
Demongeot, Jacques 1 ; Waku, Jules 1, 2

1 AGIM CNRS/UJF 3405, université J. Fourier Grenoble I, faculté de médecine, 38700 La Tronche, France
2 LIRIMA-UMMISCO, université de Yaoundé, faculté des sciences, BP 812, Yaoundé, Cameroon
@article{CRMATH_2012__350_3-4_225_0,
     author = {Demongeot, Jacques and Waku, Jules},
     title = {Robustness in biological regulatory networks {II:} {Application} to genetic threshold {Boolean} random regulatory networks {(getBren)}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {225--228},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.019/}
}
TY  - JOUR
AU  - Demongeot, Jacques
AU  - Waku, Jules
TI  - Robustness in biological regulatory networks II: Application to genetic threshold Boolean random regulatory networks (getBren)
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 225
EP  - 228
VL  - 350
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.019/
DO  - 10.1016/j.crma.2012.01.019
LA  - en
ID  - CRMATH_2012__350_3-4_225_0
ER  - 
%0 Journal Article
%A Demongeot, Jacques
%A Waku, Jules
%T Robustness in biological regulatory networks II: Application to genetic threshold Boolean random regulatory networks (getBren)
%J Comptes Rendus. Mathématique
%D 2012
%P 225-228
%V 350
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.019/
%R 10.1016/j.crma.2012.01.019
%G en
%F CRMATH_2012__350_3-4_225_0
Demongeot, Jacques; Waku, Jules. Robustness in biological regulatory networks II: Application to genetic threshold Boolean random regulatory networks (getBren). Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 225-228. doi : 10.1016/j.crma.2012.01.019. http://www.numdam.org/articles/10.1016/j.crma.2012.01.019/

[1] Demongeot, J.; Aracena, J.; Thuderoz, F.; Baum, T.P.; Cohen, O. Genetic regulation networks: circuits, regulons and attractors, Comptes Rendus Biologies, Volume 326 (2003), pp. 171-188

[2] Demongeot, J.; Elena, A.; Sené, S. Robustness in neural and genetic networks, Acta Biotheoretica, Volume 56 (2008), pp. 27-49

[3] Demongeot, J.; Jézéquel, C.; Sené, S. Asymptotic behaviour and phase transition in regulatory networks. I. Theoretical results, Neural Networks, Volume 21 (2008), pp. 962-970

[4] Demongeot, J.; Sené, S. Asymptotic behaviour and phase transition in regulatory networks. II. Simulations, Neural Networks, Volume 21 (2008), pp. 971-979

[5] Demongeot, J.; Ben Amor, H.; Gillois, P.; Noual, M.; Sené, S. Robustness of regulatory networks. A generic approach with applications at different levels: Physiologic, metabolic and genetic, Int. J. Mol. Sciences, Volume 10 (2009), pp. 4437-4473

[6] Demongeot, J.; Drouet, E.; Moreira, A.; Rechoum, Y.; Sené, S. Micro-RNAs: viral genome and robustness of the genes expression in host, Phil. Trans. Royal Soc. A, Volume 367 (2009), pp. 4941-4965

[7] Demongeot, J.; Goles, E.; Morvan, M.; Noual, M.; Sené, S. Attraction basins as gauges of environmental robustness in biological complex systems, PloS ONE, Volume 5 (2010), p. e11793

[8] Demongeot, J.; Elena, A.; Noual, M.; Sené, S.; Thuderoz, F. “Immunetworks”, attractors & intersecting circuits, J. Theor. Biology, Volume 280 (2011), pp. 19-33

[9] J. Demongeot, A. Elena, M. Noual, S. Sené, Random boolean networks and attractors of their intersecting circuits, in: Proceedings IEEE AINAʼ 11 & BLSMCʼ 11, IEEE Proceedings, Piscataway, 2011, pp. 483–487.

[10] Demongeot, J.; Waku, J. Robustness in biological regulatory networks. I. Mathematical approach, C. R. Acad. Paris, Ser. I, Volume 350 (2012) no. 3–4, pp. 221-224

[11] Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology, Nature, Volume 402 (1999), pp. 47-52

[12] Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities, PNAS, Volume 79 (1982), pp. 2554-2558

[13] D.C. Weaver, C.T. Workman, G.D. Stormo, Modelling regulatory networks with weight matrices, in: Pacific Symposium on Biocomputing, vol. 4, 1999, pp. 112–123.

Cité par Sources :