Partial Differential Equations/Functional Analysis
The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
[Le spectre essentiel de lʼopérateur intégral volumique en diffraction électromagnétique par un corps homogène]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 193-197.

Nous étudions le spectre essentiel de lʼopérateur intégral volumique fortement singulier décrivant la diffraction dʼondes électromagnétiques. Dans le cas de coefficients constants par morceaux et pour une interface régulière nous démontrons quʼil est fini et que lʼopérateur intégral est Fredholm dʼindice zéro dans H(curl) si et seulement si les perméabilité et permittivité relatives sont différentes de 0 et de −1.

We study the strongly singular volume integral operator that describes the scattering of time-harmonic electromagnetic waves. For the case of piecewise constant material coefficients and smooth interfaces, we determine the essential spectrum. We show that it is a finite set and that the operator is Fredholm of index zero in H(curl) if and only if the relative permeability and permittivity are both different from 0 and −1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.017
Costabel, Martin 1 ; Darrigrand, Eric 1 ; Sakly, Hamdi 1

1 IRMAR, université de Rennes 1, campus de Beaulieu, 35042 Rennes, France
@article{CRMATH_2012__350_3-4_193_0,
     author = {Costabel, Martin and Darrigrand, Eric and Sakly, Hamdi},
     title = {The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {193--197},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.017/}
}
TY  - JOUR
AU  - Costabel, Martin
AU  - Darrigrand, Eric
AU  - Sakly, Hamdi
TI  - The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 193
EP  - 197
VL  - 350
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.017/
DO  - 10.1016/j.crma.2012.01.017
LA  - en
ID  - CRMATH_2012__350_3-4_193_0
ER  - 
%0 Journal Article
%A Costabel, Martin
%A Darrigrand, Eric
%A Sakly, Hamdi
%T The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
%J Comptes Rendus. Mathématique
%D 2012
%P 193-197
%V 350
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.017/
%R 10.1016/j.crma.2012.01.017
%G en
%F CRMATH_2012__350_3-4_193_0
Costabel, Martin; Darrigrand, Eric; Sakly, Hamdi. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 193-197. doi : 10.1016/j.crma.2012.01.017. http://www.numdam.org/articles/10.1016/j.crma.2012.01.017/

[1] Botha, M.M. Solving the volume integral equations of electromagnetic scattering, J. Comput. Phys., Volume 218 (2006) no. 1, pp. 141-158

[2] Budko, N.V.; Samokhin, A.B. Spectrum of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 28 (2006) no. 2, pp. 682-700

[3] Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998

[4] Costabel, M. Some historical remarks on the positivity of boundary integral operators, Boundary Element Analysis, Lect. Notes Appl. Comput. Mech., vol. 29, Springer, Berlin, 2007, pp. 1-27

[5] Costabel, M.; Darrigrand, E.; Koné, E.H. Volume and surface integral equations for electromagnetic scattering by a dielectric body, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1817-1825

[6] Friedman, M.J.; Pasciak, J.E. Spectral properties for the magnetization integral operator, Math. Comp., Volume 43 (1984) no. 168, pp. 447-453

[7] Kirsch, A. An integral equation approach and the interior transmission problem for Maxwellʼs equations, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 159-179

[8] Kirsch, A.; Lechleiter, A. The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in L2, Appl. Anal., Volume 88 (2009) no. 6, pp. 807-830

[9] Nédélec, J.-C. Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001

[10] Rahola, J. On the eigenvalues of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 21 (2000) no. 5, pp. 1740-1754

Cité par Sources :