Cette Note est consacrée à lʼétude du défaut de compacité de lʼinjection de Sobolev de
This Note is devoted to the description of the lack of compactness of the Sobolev embedding of
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_177_0, author = {Bahouri, Hajer and Majdoub, Mohamed and Masmoudi, Nader}, title = {Lack of compactness in the {2D} critical {Sobolev} embedding, the general case}, journal = {Comptes Rendus. Math\'ematique}, pages = {177--181}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.016}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2012.01.016/} }
TY - JOUR AU - Bahouri, Hajer AU - Majdoub, Mohamed AU - Masmoudi, Nader TI - Lack of compactness in the 2D critical Sobolev embedding, the general case JO - Comptes Rendus. Mathématique PY - 2012 SP - 177 EP - 181 VL - 350 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.01.016/ DO - 10.1016/j.crma.2012.01.016 LA - en ID - CRMATH_2012__350_3-4_177_0 ER -
%0 Journal Article %A Bahouri, Hajer %A Majdoub, Mohamed %A Masmoudi, Nader %T Lack of compactness in the 2D critical Sobolev embedding, the general case %J Comptes Rendus. Mathématique %D 2012 %P 177-181 %V 350 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.01.016/ %R 10.1016/j.crma.2012.01.016 %G en %F CRMATH_2012__350_3-4_177_0
Bahouri, Hajer; Majdoub, Mohamed; Masmoudi, Nader. Lack of compactness in the 2D critical Sobolev embedding, the general case. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 177-181. doi : 10.1016/j.crma.2012.01.016. https://www.numdam.org/articles/10.1016/j.crma.2012.01.016/
[1] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, 2011
[2] A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Mathematici, Volume 3 (2011) no. 3, pp. 1-25
[3] Weak stability of the set of global solutions to the Navier–Stokes equations, 2011 | arXiv
[4] High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics, Volume 121 (1999), pp. 131-175
[5] On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, Volume 260 (2011), pp. 208-252
[6] Lack of compactness in the 2D critical Sobolev embedding, the general case, 2011 | arXiv
[7] A note on limiting cases of Sobolev embeddings and convolution inequalities, Communications in Partial Differential Equations, Volume 5 (1980), pp. 773-789
[8] Description du défaut de compacité de lʼinjection de Sobolev, ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 213-233 http://www.emath.fr/cocv/ (electronic)
[9] Variations et optimisation de formes, Mathématiques et Applications, vol. 48, Springer, 2005
[10] Comparaison des ondes linéaires et non linéaires à coefficients variables, Bulletin de la Société Mathématique de Belgique, Volume 10 (2003), pp. 299-312
[11] Analysis of the lack of compactness in the critical Sobolev embeddings, Journal of Functional Analysis, Volume 161 (1999), pp. 384-396
[12] Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, Acta Mathematica, Volume 201 (2008), pp. 147-212
[13] On the defect of compactness for the Strichartz estimates of the Shrödinger equation, Journal of Differential Equations, Volume 175 (2001), pp. 353-392
[14] The concentration–compactness principle in the calculus of variations. The limit case. I, Revista Matemática Iberoamericana, Volume 1 (1985), pp. 145-201
[15] Qualitative study of the critical wave equation with a subcritical perturbation, Journal of Mathematics Analysis and Applications, Volume 301 (2005), pp. 354-365
[16] A sharp form of an inequality of N. Trudinger, Indiana University Mathematics Journal, Volume 20 (1971), pp. 1077-1092
[17] Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250, Marcel Dekker Inc., 2002
[18] A sharp Trudinger–Moser type inequality for unbounded domains in
[19] Critical points of embeddings of
Cité par Sources :