Lʼobjet principal de cette Note est lʼétude de la dimension conforme Ahlfors régulière (
In this Note we study the Ahlfors regular conformal dimension (
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_141_0, author = {Carrasco Piaggio, Matias}, title = {Conformal dimension and combinatorial modulus of compact metric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--145}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.015}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2012.01.015/} }
TY - JOUR AU - Carrasco Piaggio, Matias TI - Conformal dimension and combinatorial modulus of compact metric spaces JO - Comptes Rendus. Mathématique PY - 2012 SP - 141 EP - 145 VL - 350 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.01.015/ DO - 10.1016/j.crma.2012.01.015 LA - en ID - CRMATH_2012__350_3-4_141_0 ER -
%0 Journal Article %A Carrasco Piaggio, Matias %T Conformal dimension and combinatorial modulus of compact metric spaces %J Comptes Rendus. Mathématique %D 2012 %P 141-145 %V 350 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.01.015/ %R 10.1016/j.crma.2012.01.015 %G en %F CRMATH_2012__350_3-4_141_0
Carrasco Piaggio, Matias. Conformal dimension and combinatorial modulus of compact metric spaces. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 141-145. doi : 10.1016/j.crma.2012.01.015. https://www.numdam.org/articles/10.1016/j.crma.2012.01.015/
[1] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002), pp. 127-183
[2] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246
[3] M. Bourdon, B. Kleiner, Combinatorial modulus, the Combinatorial Loewner Property, and Coxeter groups, 2010.
[4] Cohomologie
[5] Cut points and canonical splittings of hyperbolic groups, Acta Math., Volume 180 (1998) no. 2, pp. 145-186
[6] Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds, J. Geom. Anal., Volume 9 (1999), pp. 18-40
[7] The combinatorial Riemann mapping theorem, Acta Math., Volume 173 (1994) no. 2, pp. 155-234
[8] M. Carrasco Piaggio, Jauge conforme des espaces métriques compacts, Ph.D. thesis, Aix-Marseille Université, 2011.
[9] The accessibility of finitely presented groups, Invent. Math., Volume 81 (1985) no. 3, pp. 449-457
[10] The
[11] Empilements de cercles et modules combinatoires, Ann. Inst. Fourier, Volume 59 (2009) no. 6, pp. 2175-2222
[12] Coarse expanding conformal dynamics, Astérisque, Volume 325 (2009)
[13] Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001
[14] Spaces with conformal dimension greater than one, Duke Math. J., Volume 153 (2010) no. 2, pp. 211-227
[15] Dimension conforme et sphère à lʼinfini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 14 (1989), pp. 177-212
[16] On torsion-free groups with infinitely many ends, Ann. of Math. (2), Volume 88 (1968), pp. 312-334
Cité par Sources :