Un ensemble sur un plan est appelé rationnel si la distance entre tous ses points est rationnelle. Une question posée par Ulam en 1945 demande sʼil existe un ensemble rationnel et partout dense sur un plan. Solymosi et de Zeeuw ont démontré que lʼintersection de toute courbe algébrique irréductible définie sur
A rational set in the plane is a point set with all its pairwise distances rational. Ulam asked in 1945 if there is an everywhere dense rational set. Solymosi and de Zeeuw proved that every rational distance subset of the plane has only finitely many points in common with an irreducible algebraic curve defined over
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_121_0, author = {Makhul, Mehdi and Shaffaf, Jafar}, title = {On uniform boundedness of a rational distance set in the plane}, journal = {Comptes Rendus. Math\'ematique}, pages = {121--124}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.010}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2012.01.010/} }
TY - JOUR AU - Makhul, Mehdi AU - Shaffaf, Jafar TI - On uniform boundedness of a rational distance set in the plane JO - Comptes Rendus. Mathématique PY - 2012 SP - 121 EP - 124 VL - 350 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.01.010/ DO - 10.1016/j.crma.2012.01.010 LA - en ID - CRMATH_2012__350_3-4_121_0 ER -
%0 Journal Article %A Makhul, Mehdi %A Shaffaf, Jafar %T On uniform boundedness of a rational distance set in the plane %J Comptes Rendus. Mathématique %D 2012 %P 121-124 %V 350 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.01.010/ %R 10.1016/j.crma.2012.01.010 %G en %F CRMATH_2012__350_3-4_121_0
Makhul, Mehdi; Shaffaf, Jafar. On uniform boundedness of a rational distance set in the plane. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 121-124. doi : 10.1016/j.crma.2012.01.010. https://www.numdam.org/articles/10.1016/j.crma.2012.01.010/
[1] Integral distances, Bull. Amer. Math. Soc., Volume 51 (1945), pp. 598-600
[2] Research Problems in Discrete Geometry, Springer, Berlin, 2005 (XII, 499 p)
[3] Points on
[4] Counting rational points on algebraic curves, Rome, 1995 (Rend. Semin. Mat. Univ. Politec. Torino), Volume vol. 53 (1995), pp. 223-229 MR1452380 (98i:11041)
[5] How many rational points can a curve have?, Texel Island, 1994 (Progr. Math.), Volume vol. 129, Birkhäuser Boston, MA (1995), pp. 13-31 MR1363052 (97d:11099)
[6] Uniformity of rational points, J. Amer. Math. Soc., Volume 10 (1997), pp. 1-35
[7] Points at rational distances on a parabola, Rocky Mountain J. Math., Volume 36 (2006) no. 2, pp. 413-424
[8] Some combinatorial and metric problems in geometry, Siófok (Colloq. Math. Soc. János Bolyai), Volume 48 (1985), pp. 167-177
[9] Unsolved Problems in Number Theory, Problem Books in Mathematics Subseries: Unsolved Problems in Intuitive Mathematics, vol. 1, Springer, 2004 (XVIII, 438 p)
[10] A. Kemnitz, Punktmengen mit ganzzahligen Abständen, Habilitationsschrift, TU Braunschweig, 1988.
[11] There are integral heptagons, no three points on a line, no four on a circle, Discrete Comput. Geom., Volume 39 (2008) no. 4, pp. 786-790
[12] Note on integral distances, Discrete Comput. Geom., Volume 30 (2003) no. 2, pp. 337-342
[13] On a question of Erdős and Ulam, Discrete Comput. Geom., Volume 43 (2010) no. 2, pp. 393-401
[14] A Collection of Mathematical Problems, Interscience Tracts in Pure and Appl. Math., vol. 8, Interscience Publishers, 1960 (XIII, 150 p)
Cité par Sources :