Soit V un fibré vectoriel sur une courbe projective lisse irréductible définie sur . Pour tout entier , soit le fibré en grassmanniennes paramétrisant les quotients de dimension r des fibrés de V. Soit L un fibré en droites sur tel que pour toute courbe fermée irréducible . On prouve alors que L est ample.
Let V be a vector bundle over an irreducible smooth projective curve defined over the field . For any integer , let be the Grassmann bundle parametrizing r-dimensional quotients of the fibers of V. Let L be a line bundle over such that for every irreducible closed curve . We prove that L is ample.
Accepté le :
Publié le :
@article{CRMATH_2012__350_3-4_213_0, author = {Biswas, Indranil and Parameswaran, A.J.}, title = {On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {213--216}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.006/} }
TY - JOUR AU - Biswas, Indranil AU - Parameswaran, A.J. TI - On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$ JO - Comptes Rendus. Mathématique PY - 2012 SP - 213 EP - 216 VL - 350 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2012.01.006/ DO - 10.1016/j.crma.2012.01.006 LA - en ID - CRMATH_2012__350_3-4_213_0 ER -
%0 Journal Article %A Biswas, Indranil %A Parameswaran, A.J. %T On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$ %J Comptes Rendus. Mathématique %D 2012 %P 213-216 %V 350 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2012.01.006/ %R 10.1016/j.crma.2012.01.006 %G en %F CRMATH_2012__350_3-4_213_0
Biswas, Indranil; Parameswaran, A.J. On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 213-216. doi : 10.1016/j.crma.2012.01.006. http://www.numdam.org/articles/10.1016/j.crma.2012.01.006/
[1] On principal bundles over a projective variety defined over a finite field, J. K-Theory, Volume 4 (2009), pp. 209-221
[2] Comparison of fundamental group schemes of a projective variety and an ample hypersurface, J. Algebraic Geom., Volume 16 (2007), pp. 547-597
[3] On the ample vector bundles over curves in positive characteristic, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 355-358
[4] On a question of Sean Keel, J. Pure Appl. Algebra, Volume 215 (2011), pp. 2600-2602
[5] Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., Volume 29 (1966), pp. 63-94
[6] Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, Berlin–Heidelberg–New York, 1970
[7] Polarized pushouts over finite fields, Comm. Algebra, Volume 31 (2003), pp. 3955-3982
[8] Nef line bundles which are not ample, Math. Z., Volume 219 (1995), pp. 235-244
[9] The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci., Volume 91 (1982), pp. 73-122
[10] Mumfordʼs example and a general construction, Proc. Indian Acad. Sci. Math. Sci., Volume 99 (1989), pp. 197-208
[11] Strongly semistable bundles on a curve over a finite field, Arch. Math., Volume 89 (2007), pp. 68-72
Cité par Sources :