Dans cette Note, on donne deux nouveaux résultats perturbatifs pour préscrire la courbure scalaire de Webster sur la sphère de dimension munie de sa structure CR standard. Le premier résultat généralise celui obtenu par A. Malchiodi et F. Uguzzoni (2002) dans [9].
In this Note, we give two new perturbative results for prescribing the Webster scalar curvature on the -dimensional sphere endowed with its standard CR structure. The first result generalizes the one obtained by A. Malchiodi and F. Uguzzoni (2002) in [9].
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1277_0, author = {Yacoub, Ridha}, title = {Prescribing the {Webster} scalar curvature on {\protect\emph{CR}} spheres}, journal = {Comptes Rendus. Math\'ematique}, pages = {1277--1280}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.007/} }
TY - JOUR AU - Yacoub, Ridha TI - Prescribing the Webster scalar curvature on CR spheres JO - Comptes Rendus. Mathématique PY - 2011 SP - 1277 EP - 1280 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.11.007/ DO - 10.1016/j.crma.2011.11.007 LA - en ID - CRMATH_2011__349_23-24_1277_0 ER -
%0 Journal Article %A Yacoub, Ridha %T Prescribing the Webster scalar curvature on CR spheres %J Comptes Rendus. Mathématique %D 2011 %P 1277-1280 %V 349 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.11.007/ %R 10.1016/j.crma.2011.11.007 %G en %F CRMATH_2011__349_23-24_1277_0
Yacoub, Ridha. Prescribing the Webster scalar curvature on CR spheres. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1277-1280. doi : 10.1016/j.crma.2011.11.007. http://www.numdam.org/articles/10.1016/j.crma.2011.11.007/
[1] Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989
[2] The scalar curvature problem on the standard three-dimensional sphere, J. Funct. Anal., Volume 95 (1991) no. 1, pp. 106-172
[3] Topological methods for the prescribed Webster scalar curvature problem on CR manifolds, Diff. Geom. Appl., Volume 28 (2010), pp. 264-281
[4] H. Chtioui, M.O. Ahmedou, R. Yacoub, Existence and multiplicity results for the prescribed Webster scalar curvature problem on three CR manifolds, J. Geom. Anal., , in press. | DOI
[5] Some existence results for the Webster scalar curvature problem in presence of symmetry, Annali di Matematica, Volume 183 (2004), pp. 469-493
[6] CR Yamabe conjecture – the conformally flat case, Pac. J. Math., Volume 201 (2001) no. 1, pp. 121-175
[7] The Yamabe problem on CR manifolds, J. Differential Geometry, Volume 25 (1987), pp. 167-197
[8] The scalar curvature problem on : an approach via Morse theory, Calc. Var. PDEs, Volume 14 (2002), pp. 429-445
[9] A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl., Volume 81 (2002), pp. 983-997
[10] Prescribed scalar curvature problem on the n-sphere, Calc. Var. PDEs, Volume 4 (1996), pp. 1-25
[11] On the scalar curvature equations in high dimension, Adv. Nonlin. Stud., Volume 2 (2002) no. 4, pp. 373-393
Cité par Sources :