Topology
The Goldman bracket characterizes homeomorphisms
[Le crochet de Goldman caractérise les homéomorphismes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1269-1272.

Nous montrons quʼune équivalence dʼhomotopie entre des surfaces compactes, connexes, orientées et de bord non vide, est homotope à un homéomorphisme si et seulement si elle commute avec le crochet de Goldman.

We show that a homotopy equivalence between compact, connected, oriented surfaces with non-empty boundary is homotopic to a homeomorphism if and only if it commutes with the Goldman bracket.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.11.005
Gadgil, Siddhartha 1

1 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
@article{CRMATH_2011__349_23-24_1269_0,
     author = {Gadgil, Siddhartha},
     title = {The {Goldman} bracket characterizes homeomorphisms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1269--1272},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.11.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/}
}
TY  - JOUR
AU  - Gadgil, Siddhartha
TI  - The Goldman bracket characterizes homeomorphisms
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1269
EP  - 1272
VL  - 349
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/
DO  - 10.1016/j.crma.2011.11.005
LA  - en
ID  - CRMATH_2011__349_23-24_1269_0
ER  - 
%0 Journal Article
%A Gadgil, Siddhartha
%T The Goldman bracket characterizes homeomorphisms
%J Comptes Rendus. Mathématique
%D 2011
%P 1269-1272
%V 349
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/
%R 10.1016/j.crma.2011.11.005
%G en
%F CRMATH_2011__349_23-24_1269_0
Gadgil, Siddhartha. The Goldman bracket characterizes homeomorphisms. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1269-1272. doi : 10.1016/j.crma.2011.11.005. http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/

[1] Abbondandolo, A.; Schwarz, M. Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722

[2] Chas, M. Combinatorial Lie bialgebras of curves on surfaces, Topology, Volume 43 (2004), pp. 543-568

[3] M. Chas, D. Sullivan, String topology, Annals of Mathematics, in press, . | arXiv

[4] Goldman, W.M. Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986) no. 2, pp. 263-302

[5] Waldhausen, F. On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88

Cité par Sources :