Nous montrons quʼune équivalence dʼhomotopie entre des surfaces compactes, connexes, orientées et de bord non vide, est homotope à un homéomorphisme si et seulement si elle commute avec le crochet de Goldman.
We show that a homotopy equivalence between compact, connected, oriented surfaces with non-empty boundary is homotopic to a homeomorphism if and only if it commutes with the Goldman bracket.
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1269_0, author = {Gadgil, Siddhartha}, title = {The {Goldman} bracket characterizes homeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {1269--1272}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/} }
TY - JOUR AU - Gadgil, Siddhartha TI - The Goldman bracket characterizes homeomorphisms JO - Comptes Rendus. Mathématique PY - 2011 SP - 1269 EP - 1272 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/ DO - 10.1016/j.crma.2011.11.005 LA - en ID - CRMATH_2011__349_23-24_1269_0 ER -
%0 Journal Article %A Gadgil, Siddhartha %T The Goldman bracket characterizes homeomorphisms %J Comptes Rendus. Mathématique %D 2011 %P 1269-1272 %V 349 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/ %R 10.1016/j.crma.2011.11.005 %G en %F CRMATH_2011__349_23-24_1269_0
Gadgil, Siddhartha. The Goldman bracket characterizes homeomorphisms. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1269-1272. doi : 10.1016/j.crma.2011.11.005. http://www.numdam.org/articles/10.1016/j.crma.2011.11.005/
[1] Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722
[2] Combinatorial Lie bialgebras of curves on surfaces, Topology, Volume 43 (2004), pp. 543-568
[3] M. Chas, D. Sullivan, String topology, Annals of Mathematics, in press, . | arXiv
[4] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986) no. 2, pp. 263-302
[5] On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88
Cité par Sources :