Nous montrons que les travaux récents de Ni et Wilking (in preparation) [11] donne le résultat dʼun non plate soliton contractant de type gradient non compact a tout au plus sa courbure scalaire avec décroissance quadratique. Les exemples de solitons de Kähler–Ricci contractant de type non compact par Feldman, Ilmanen, et Knopf (2003) [7] montre que ce résultat est optimales. Nous prouvons aussi un résultat similaire pour certains solitons de Ricci stable de type gradient non compact.
We show that recent work of Ni and Wilking (in preparation) [11] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003) [7] exhibit that this result is sharp. We also prove a similar result for certain noncompact steady gradient Ricci solitons.
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1265_0, author = {Chow, Bennett and Lu, Peng and Yang, Bo}, title = {Lower bounds for the scalar curvatures of noncompact gradient {Ricci} solitons}, journal = {Comptes Rendus. Math\'ematique}, pages = {1265--1267}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/} }
TY - JOUR AU - Chow, Bennett AU - Lu, Peng AU - Yang, Bo TI - Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons JO - Comptes Rendus. Mathématique PY - 2011 SP - 1265 EP - 1267 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/ DO - 10.1016/j.crma.2011.11.004 LA - en ID - CRMATH_2011__349_23-24_1265_0 ER -
%0 Journal Article %A Chow, Bennett %A Lu, Peng %A Yang, Bo %T Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons %J Comptes Rendus. Mathématique %D 2011 %P 1265-1267 %V 349 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/ %R 10.1016/j.crma.2011.11.004 %G en %F CRMATH_2011__349_23-24_1265_0
Chow, Bennett; Lu, Peng; Yang, Bo. Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1265-1267. doi : 10.1016/j.crma.2011.11.004. http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/
[1] Uniqueness of gradient Ricci solitons, Mathematical Research Letters, Volume 18 (2011), pp. 531-538
[2] Huai-Dong Cao, Qiang Chen, On locally conformally flat gradient steady Ricci solitons, Transactions of the American Mathematical Society, in press.
[3] On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, Volume 85 (2010), pp. 175-185
[4] Strong uniqueness of the Ricci flow, Journal of Differential Geometry, Volume 82 (2009), pp. 363-382
[5] Ricci solitons: the equation point of view, Manuscripta Mathematica, Volume 127 (2008), pp. 345-367
[6] Complete gradient shrinking Ricci solitons have finite topological type, Comptes Rendus Mathematique Academie des Sciences Paris, Volume 346 (2008), pp. 653-656
[7] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Journal of Differential Geometry, Volume 65 (2003), pp. 169-209
[8] Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton, Proceedings of the American Mathematical Society, Volume 137 (2009), pp. 2093-2097
[9] The formation of singularities in the Ricci flow, Surveys in Differential Geometry, vol. II, International Press, Cambridge, MA, 1995, pp. 7-136
[10] A compactness theorem for complete Ricci shrinkers, Geometric and Functional Analysis, Volume 21 (2011) no. 5, pp. 1091-1116
[11] Lei Ni, Burkhard Wilking, in preparation.
[12] Ovidiu Munteanu, Natasa Sesum, On gradient Ricci solitons, , Journal of Geometric Analysis, in press. | arXiv
[13] Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, Volume 268 (2011) no. 3–4, pp. 777-790 | DOI
[14] Remarks on gradient steady Ricci solitons | arXiv
[15] On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Mathematica Sinica, Volume 27 (2011) no. 5, pp. 871-882
Cité par Sources :