Differential Geometry
Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
[Minorer des la courbures scalaires de solitons de Ricci gradient non compact]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1265-1267.

Nous montrons que les travaux récents de Ni et Wilking (in preparation) [11] donne le résultat dʼun non plate soliton contractant de type gradient non compact a tout au plus sa courbure scalaire avec décroissance quadratique. Les exemples de solitons de Kähler–Ricci contractant de type non compact par Feldman, Ilmanen, et Knopf (2003) [7] montre que ce résultat est optimales. Nous prouvons aussi un résultat similaire pour certains solitons de Ricci stable de type gradient non compact.

We show that recent work of Ni and Wilking (in preparation) [11] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003) [7] exhibit that this result is sharp. We also prove a similar result for certain noncompact steady gradient Ricci solitons.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.11.004
Chow, Bennett 1 ; Lu, Peng 2 ; Yang, Bo 1

1 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, United States
2 Department of Mathematics, University of Oregon, Eugene, OR 97403, United States
@article{CRMATH_2011__349_23-24_1265_0,
     author = {Chow, Bennett and Lu, Peng and Yang, Bo},
     title = {Lower bounds for the scalar curvatures of noncompact gradient {Ricci} solitons},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1265--1267},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.11.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/}
}
TY  - JOUR
AU  - Chow, Bennett
AU  - Lu, Peng
AU  - Yang, Bo
TI  - Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1265
EP  - 1267
VL  - 349
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/
DO  - 10.1016/j.crma.2011.11.004
LA  - en
ID  - CRMATH_2011__349_23-24_1265_0
ER  - 
%0 Journal Article
%A Chow, Bennett
%A Lu, Peng
%A Yang, Bo
%T Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
%J Comptes Rendus. Mathématique
%D 2011
%P 1265-1267
%V 349
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/
%R 10.1016/j.crma.2011.11.004
%G en
%F CRMATH_2011__349_23-24_1265_0
Chow, Bennett; Lu, Peng; Yang, Bo. Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1265-1267. doi : 10.1016/j.crma.2011.11.004. http://www.numdam.org/articles/10.1016/j.crma.2011.11.004/

[1] Brendle, Simon Uniqueness of gradient Ricci solitons, Mathematical Research Letters, Volume 18 (2011), pp. 531-538

[2] Huai-Dong Cao, Qiang Chen, On locally conformally flat gradient steady Ricci solitons, Transactions of the American Mathematical Society, in press.

[3] Cao, Huai-Dong; Zhou, De-Tang On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, Volume 85 (2010), pp. 175-185

[4] Chen, Bing-Long Strong uniqueness of the Ricci flow, Journal of Differential Geometry, Volume 82 (2009), pp. 363-382

[5] Eminenti, Manolo; La Nave, Gabriele; Mantegazza, Carlo Ricci solitons: the equation point of view, Manuscripta Mathematica, Volume 127 (2008), pp. 345-367

[6] Fang, Fu-Quan; Man, Jian-Wen; Zhang, Zhen-Lei Complete gradient shrinking Ricci solitons have finite topological type, Comptes Rendus Mathematique Academie des Sciences Paris, Volume 346 (2008), pp. 653-656

[7] Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Journal of Differential Geometry, Volume 65 (2003), pp. 169-209

[8] Guo, Hongxin Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton, Proceedings of the American Mathematical Society, Volume 137 (2009), pp. 2093-2097

[9] Hamilton, Richard S. The formation of singularities in the Ricci flow, Surveys in Differential Geometry, vol. II, International Press, Cambridge, MA, 1995, pp. 7-136

[10] Haslhofer, Robert; Müller, Reto A compactness theorem for complete Ricci shrinkers, Geometric and Functional Analysis, Volume 21 (2011) no. 5, pp. 1091-1116

[11] Lei Ni, Burkhard Wilking, in preparation.

[12] Ovidiu Munteanu, Natasa Sesum, On gradient Ricci solitons, , Journal of Geometric Analysis, in press. | arXiv

[13] Pigola, Stefano; Rimoldi, Michele; Setti, Alberto G. Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, Volume 268 (2011) no. 3–4, pp. 777-790 | DOI

[14] Wu, Peng Remarks on gradient steady Ricci solitons | arXiv

[15] Zhang, Shijin On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Mathematica Sinica, Volume 27 (2011) no. 5, pp. 871-882

Cité par Sources :