Pour toute fonction telle que , où Δ est la fonction de Erdös–Hooley, nous montrons que la série converge presque partout dès que la suite des coefficients vérifie
If satisfies , where Δ is the Erdös–Hooley function, we show that the series converges for almost every x, whenever the coefficient sequence verifies the condition
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1261_0, author = {Weber, Michel J.G.}, title = {On systems of dilated functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1261--1263}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.11.003/} }
TY - JOUR AU - Weber, Michel J.G. TI - On systems of dilated functions JO - Comptes Rendus. Mathématique PY - 2011 SP - 1261 EP - 1263 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.11.003/ DO - 10.1016/j.crma.2011.11.003 LA - en ID - CRMATH_2011__349_23-24_1261_0 ER -
Weber, Michel J.G. On systems of dilated functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1261-1263. doi : 10.1016/j.crma.2011.11.003. http://www.numdam.org/articles/10.1016/j.crma.2011.11.003/
[1] I. Berkes, On the convergence of and the Lip 1/2 class, Trans. Amer. Math. Soc. 349 (10) 4143–4158.
[2] On the convergence of , Memoirs of the A.M.S., Volume 201 (2009) no. 943 (vi+72p)
[3] On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157
[4] On convergence and divergence systems, Mat. Zametki, Volume 4 (1968), pp. 253-260
[5] An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979
[6] A new technique and its application to the theory of numbers, Proc. London Math. Soc. (3), Volume 38 (1979), pp. 115-151
[7] Dynamical Systems and Processes, IRMA Lectures in Mathematics and Theoretical Physics, vol. 14, European Mathematical Society Publishing House, 2009 (xiii+759p)
Cité par Sources :