Soit Γ un sous-groupe discret cocompact dʼun groupe algébique réductif affine G. Nous démontrons que tout fibré invariant sur est semi-stable.
Let G be a connected reductive affine algebraic group defined over , and let Γ be a cocompact lattice in G. We prove that any invariant bundle on is semistable.
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1187_0, author = {Biswas, Indranil}, title = {Semistability of invariant bundles over $ G/\Gamma $}, journal = {Comptes Rendus. Math\'ematique}, pages = {1187--1190}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.022/} }
TY - JOUR AU - Biswas, Indranil TI - Semistability of invariant bundles over $ G/\Gamma $ JO - Comptes Rendus. Mathématique PY - 2011 SP - 1187 EP - 1190 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.022/ DO - 10.1016/j.crma.2011.10.022 LA - en ID - CRMATH_2011__349_21-22_1187_0 ER -
%0 Journal Article %A Biswas, Indranil %T Semistability of invariant bundles over $ G/\Gamma $ %J Comptes Rendus. Mathématique %D 2011 %P 1187-1190 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.022/ %R 10.1016/j.crma.2011.10.022 %G en %F CRMATH_2011__349_21-22_1187_0
Biswas, Indranil. Semistability of invariant bundles over $ G/\Gamma $. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1187-1190. doi : 10.1016/j.crma.2011.10.022. http://www.numdam.org/articles/10.1016/j.crma.2011.10.022/
[1] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207
[2] Stable Higgs bundles on compact Gauduchon manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 71-74
[3] Principal bundles on compact complex manifolds with trivial tangent bundle, Arch. Math. (Basel), Volume 96 (2011), pp. 409-416
[4] Harder–Narasimhan filtration on non Kähler manifolds, Int. J. Math., Volume 12 (2001), pp. 579-594
[5] Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987
[6] Stable principal bundles on a compact Riemann surface, Math. Ann., Volume 213 (1975), pp. 129-152
Cité par Sources :