Nous présentons un estimateur nonparamétrique de la densité de lʼerreur dans le modèle de régression , où la fonction m est lisse mais inconnue, et le terme dʼerreur ε est indépendant de X. Lʼestimateur proposé est basé sur une estimation nonparamétrique des résidus, et sa consistance faible est obtenue. Notre contribution se situe à deux niveaux. Dʼabord, nous évaluons lʼimpact de lʼestimation de la fonction de régression sur lʼestimateur final de la densité de lʼerreur. Ensuite, nous proposons les choix optimaux des fenêtres de première et de deuxième étape utilisées respectivement pour les estimations de m et de la densité des résidus. Nous étudions également la normalié asymptotique de lʼestimateur de la densité de lʼerreur et sa vitesse de convergence.
Consider the nonparametric regression model , where the function m is smooth but unknown, and ε is independent of X. An estimator of the density of the error term ε is proposed and its weak consistency is obtained. The strategy used here is based on the kernel estimation of the residuals. Our contribution is twofold. First, we evaluate the impact of the estimation of the regression function m on the error density estimator. Secondly, the optimal choices of the first and second-step bandwidths used for estimating the regression function and the error density respectively, are proposed. Further, we investigate the asymptotic normality of the error density estimator and its rate-optimality.
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1281_0, author = {Samb, Rawane}, title = {Nonparametric estimation of the density of regression errors}, journal = {Comptes Rendus. Math\'ematique}, pages = {1281--1285}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.10.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.017/} }
TY - JOUR AU - Samb, Rawane TI - Nonparametric estimation of the density of regression errors JO - Comptes Rendus. Mathématique PY - 2011 SP - 1281 EP - 1285 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.017/ DO - 10.1016/j.crma.2011.10.017 LA - en ID - CRMATH_2011__349_23-24_1281_0 ER -
%0 Journal Article %A Samb, Rawane %T Nonparametric estimation of the density of regression errors %J Comptes Rendus. Mathématique %D 2011 %P 1281-1285 %V 349 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.017/ %R 10.1016/j.crma.2011.10.017 %G en %F CRMATH_2011__349_23-24_1281_0
Samb, Rawane. Nonparametric estimation of the density of regression errors. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1281-1285. doi : 10.1016/j.crma.2011.10.017. http://www.numdam.org/articles/10.1016/j.crma.2011.10.017/
[1] Non-parametric estimation of the residual distribution, Scand. J. Stat., Volume 28 (2001), pp. 549-567
[2] Asymptotic distributions of error density and distribution function estimators in nonparametric regression, J. Statist. Plann. Inference, Volume 128 (2005), pp. 327-349
[3] General asymptotic confidence bands based on kernel-type function estimators, Stat. Inference Stoch. Process., Volume 7 (2004), pp. 225-277
[4] Estimation of the density of the regression errors, Ann. Statist., Volume 33 (2005), pp. 2194-2227
[5] Estimating the error distribution in nonparametric regression with multivariate covariates, Statist. Probab. Lett., Volume 79 (2009), pp. 957-964
[6] On a regression estimate, Teor. Verojatnost. i Primenen., Volume 9 (1964), pp. 157-159
[7] Estimating the error distribution in nonparametric multiple regression with applications to model testing, J. Multivariate Anal., Volume 101 (2010), pp. 1067-1078
[8] Optimal filtering of a square integrable signal in Gaussian white noise, Probl. Inf. Transm., Volume 16 (1980), pp. 52-68
[9] Nonparametric estimation of the density of the regression noise, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 461-466
[10] Multivariate Density Estimation, Wiley, 1992
[11] Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, vol. 26, Chapman and Hall, London, 1986
[12] Kernel Smoothing, Chapman & Hall/CRC, 1995
[13] Smooth regression analysis, Sankhyā Ser. A, Volume 26 (1964), pp. 359-372
Cité par Sources :