Cette Note annonce des résultats dont les démonstrations seront publiées ailleurs. Ils concernent des formes de la conjecture
This is an announcement of results whose proofs will be published elsewhere: We establish forms of the
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1127_0, author = {Yamashita, Go}, title = {\protect\emph{p}-Adic {Hodge} theory for open varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {1127--1130}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.016}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.10.016/} }
TY - JOUR AU - Yamashita, Go TI - p-Adic Hodge theory for open varieties JO - Comptes Rendus. Mathématique PY - 2011 SP - 1127 EP - 1130 VL - 349 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.10.016/ DO - 10.1016/j.crma.2011.10.016 LA - en ID - CRMATH_2011__349_21-22_1127_0 ER -
Yamashita, Go. p-Adic Hodge theory for open varieties. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1127-1130. doi : 10.1016/j.crma.2011.10.016. https://www.numdam.org/articles/10.1016/j.crma.2011.10.016/
[1] Représentations p-adiques et équations différentielles, Invent. Math., Volume 148 (2002), pp. 219-286
[2] Smoothness, semistability and alterations, Inst. Hautes Etudes Sci. Publ. Math., Volume 83 (1996), pp. 51-93
[3] On the De Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math., Volume 45 (1975), pp. 5-99
[4] Algebraic de Rham cohomology, Manuscripta Math., Volume 7 (1972), pp. 125-140
[5] Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque, Volume 223 (1994), pp. 221-268
[6] Logarithmic structures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 1989, pp. 191-224
[7] F-crystals on schemes with constant log structure, Special issue in honor of F. Oort, Comp. Math., Volume 97 (1995), pp. 187-225
[8] p-Adic étale cohomology and crystalline cohomology in the semistable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411
[9] Poincaré duality for logarithmic crystalline cohomology, Compositio Math., Volume 118 (1999) no. 1, pp. 11-41
[10] Semi-stable conjecture of Fontaine–Jannsen: a survey, Astérisque, Volume 279 (2002), pp. 323-370
Cité par Sources :