Dans cette Note nous présentons les résultats suivants : (i) la description par la transformation de Cauchy–Fantappiè des fonctionnelles analytiques, des dualités mutuelles entre le -espace des fonctions holomorphes dans le domaine linéellement convexe Ω de avec croissance polynomiale près de la frontière de ∂Ω, et le -espace des fonctions holomorphes dans lʼintérieur de lʼensemble conjugué qui sont dans ; (ii) lʼexistence dʼensembles suffisants dénombrables dans et ; (iii) la possibilité (respectivement, lʼimpossibilité) de représentation des fonctions de (respectivement, ) sous la forme de séries de fractions partielles.
In this Note we present the following results: (i) a description, via the Cauchy–Fantappiè transformation of analytic functionals, of the mutual dualities between the -space of holomorphic functions in a bounded lineally convex domain Ω of with polynomial growth near the boundary ∂Ω, and the -space of holomorphic functions in the interior of the conjugate set that are in ; (ii) the existence of countable sufficient sets in and ; (iii) a possibility (respectively, the failure) of representing functions from (respectively, ) in the form of series of partial fractions.
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1155_0, author = {Abanin, A.V. and Khoi, Le Hai}, title = {Cauchy{\textendash}Fantappi\`e transformation and mutual dualities between $ {A}^{-\infty }(\Omega )$ and $ {A}^{\infty }(\tilde{\Omega })$ for lineally convex domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {1155--1158}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.013/} }
TY - JOUR AU - Abanin, A.V. AU - Khoi, Le Hai TI - Cauchy–Fantappiè transformation and mutual dualities between $ {A}^{-\infty }(\Omega )$ and $ {A}^{\infty }(\tilde{\Omega })$ for lineally convex domains JO - Comptes Rendus. Mathématique PY - 2011 SP - 1155 EP - 1158 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.013/ DO - 10.1016/j.crma.2011.10.013 LA - en ID - CRMATH_2011__349_21-22_1155_0 ER -
%0 Journal Article %A Abanin, A.V. %A Khoi, Le Hai %T Cauchy–Fantappiè transformation and mutual dualities between $ {A}^{-\infty }(\Omega )$ and $ {A}^{\infty }(\tilde{\Omega })$ for lineally convex domains %J Comptes Rendus. Mathématique %D 2011 %P 1155-1158 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.013/ %R 10.1016/j.crma.2011.10.013 %G en %F CRMATH_2011__349_21-22_1155_0
Abanin, A.V.; Khoi, Le Hai. Cauchy–Fantappiè transformation and mutual dualities between $ {A}^{-\infty }(\Omega )$ and $ {A}^{\infty }(\tilde{\Omega })$ for lineally convex domains. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1155-1158. doi : 10.1016/j.crma.2011.10.013. http://www.numdam.org/articles/10.1016/j.crma.2011.10.013/
[1] A.V. Abanin, Le Hai Khoi, Pre-dual of the function algebra and representation of functions in Dirichlet series, Complex Anal. Oper. Theory (, available online on Feb 18, 2010). | DOI
[2] Dual of the function algebra and representation of functions in Dirichlet series, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 3623-3635
[3] Complex Convexity and Analytic Functionals, Birkhäuser, 2004
[4] Duality between and on domains with non-degenerate corners, Contemp. Math. AMS, Volume 185 (1995), pp. 77-87
[5] Summers, J. Math. Anal. Appl., Volume 277 (2003), pp. 651-669
[6] Sampling sets and sufficient sets for , J. Math. Anal. Appl., Volume 277 (2003), pp. 651-669
[7] On an explicit construction of weakly sufficient sets for the function algebra , Compl. Var. Elliptic Equation, Volume 54 (2009), pp. 879-897
[8] Spaces of functions, analytic in some linearly convex domains of , having prescribed behavior near the boundary, Izv. Vyssh. Uchebn. Zaved. Mat., Volume 29 (1985) no. 6, pp. 10-13 (in Russian). English translation in Soviet Math. (Iz. VUZ), 29, 6, 1985, pp. 11-14
[9] Variations of weakly sufficient sets in spaces of analytic functions, Izv. Vyssh. Uchebn. Zaved. Mat., Volume 30 (1986) no. 7, pp. 50-56 (in Russian). English translation in Soviet Math. (Iz. VUZ), 30, 7, 1986, pp. 67-74
[10] Sampling sequences for , Michigan Math. J., Volume 44 (1997), pp. 389-398
[11] Sets of uniqueness, weakly sufficient sets and sampling sets for , Bull. Korean Math. Soc., Volume 47 (2010), pp. 933-950
[12] A study of the Bergman projection in certain Hartogs domains, Proc. Symp. Pure Math., Volume 52 (1991), pp. 219-232
[13] Sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc., Volume 197 (1974), pp. 161-180
Cité par Sources :