Differential Geometry
A Note on surfaces with parallel mean curvature
[Une Note sur des surfaces de courbure moyenne parallèle]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1195-1197.

Dans cette Note, on étudie des immersions isométriques de surfaces complètes Σ2 dans Mn(c)×R, ou Mn(c) est une variété complète simplement connexe de courbure sectionnelle constante c. On classifie ces immersions, lorsque leur vecteur courbure moyenne est parallèle dans le fibré normal et leur courbure intrinsèque est positive ou nulle. Lʼoutil principal est une différentielle quadratique holomorphe dont la partie sans trace satisfait lʼéquation de Codazzi.

We use a Simons type equation in order to characterize complete non-minimal pmc surfaces with non-negative Gaussian curvature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.012
Fetcu, Dorel 1 ; Rosenberg, Harold 2

1 Department of Mathematics, “Gh. Asachi” Technical University of Iasi, Bd. Carol I no. 11, 700506 Iasi, Romania
2 IMPA, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brasil
@article{CRMATH_2011__349_21-22_1195_0,
     author = {Fetcu, Dorel and Rosenberg, Harold},
     title = {A {Note} on surfaces with parallel mean curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1195--1197},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/}
}
TY  - JOUR
AU  - Fetcu, Dorel
AU  - Rosenberg, Harold
TI  - A Note on surfaces with parallel mean curvature
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1195
EP  - 1197
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/
DO  - 10.1016/j.crma.2011.10.012
LA  - en
ID  - CRMATH_2011__349_21-22_1195_0
ER  - 
%0 Journal Article
%A Fetcu, Dorel
%A Rosenberg, Harold
%T A Note on surfaces with parallel mean curvature
%J Comptes Rendus. Mathématique
%D 2011
%P 1195-1197
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/
%R 10.1016/j.crma.2011.10.012
%G en
%F CRMATH_2011__349_21-22_1195_0
Fetcu, Dorel; Rosenberg, Harold. A Note on surfaces with parallel mean curvature. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1195-1197. doi : 10.1016/j.crma.2011.10.012. http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/

[1] Abresch, U.; Rosenberg, H. A Hopf differential for constant mean curvature surfaces in S2×R and H2×R, Acta Math., Volume 193 (2004), pp. 141-174

[2] Abresch, U.; Rosenberg, H. Generalized Hopf differentials, Mat. Contemp., Volume 28 (2005), pp. 1-28

[3] Alencar, H.; do Carmo, M.; Tribuzy, R. A theorem of Hopf and the Cauchy–Riemann inequality, Comm. Anal. Geom., Volume 15 (2007), pp. 283-298

[4] Alencar, H.; do Carmo, M.; Tribuzy, R. A Hopf theorem for ambient spaces of dimensions higher than three, J. Differential Geometry, Volume 84 (2010), pp. 1-17

[5] M. Batista, Simons type equation in S2×R and H2×R and applications, Ann. Inst. Fourier, in press.

[6] Cheng, S.-Y.; Yau, S.-T. Hypersurfaces with constant scalar curvature, Math. Ann., Volume 225 (1977), pp. 195-204

[7] Espinar, J.M.; Rosenberg, H. Complete constant mean curvature surfaces in homogeneous spaces, Comment. Math. Helv., Volume 86 (2011), pp. 659-674

[8] Huber, A. On subharmonic functions and differential geometry in the large, Comment. Math. Helv., Volume 32 (1957), pp. 13-71

[9] Nomizu, K.; Smyth, B. A formula of Simonsʼ type and hypersurfaces with constant mean curvature, J. Differential Geometry, Volume 3 (1969), pp. 367-377

[10] Simons, J. Minimal varieties in Riemannian manifolds, Ann. of Math., Volume 88 (1968), pp. 62-105

[11] Smyth, B. Submanifolds of constant mean curvature, Math. Ann., Volume 205 (1973), pp. 265-280

Cité par Sources :