Dans cette Note, on étudie des immersions isométriques de surfaces complètes dans , ou est une variété complète simplement connexe de courbure sectionnelle constante c. On classifie ces immersions, lorsque leur vecteur courbure moyenne est parallèle dans le fibré normal et leur courbure intrinsèque est positive ou nulle. Lʼoutil principal est une différentielle quadratique holomorphe dont la partie sans trace satisfait lʼéquation de Codazzi.
We use a Simons type equation in order to characterize complete non-minimal pmc surfaces with non-negative Gaussian curvature.
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1195_0, author = {Fetcu, Dorel and Rosenberg, Harold}, title = {A {Note} on surfaces with parallel mean curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {1195--1197}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/} }
TY - JOUR AU - Fetcu, Dorel AU - Rosenberg, Harold TI - A Note on surfaces with parallel mean curvature JO - Comptes Rendus. Mathématique PY - 2011 SP - 1195 EP - 1197 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/ DO - 10.1016/j.crma.2011.10.012 LA - en ID - CRMATH_2011__349_21-22_1195_0 ER -
%0 Journal Article %A Fetcu, Dorel %A Rosenberg, Harold %T A Note on surfaces with parallel mean curvature %J Comptes Rendus. Mathématique %D 2011 %P 1195-1197 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/ %R 10.1016/j.crma.2011.10.012 %G en %F CRMATH_2011__349_21-22_1195_0
Fetcu, Dorel; Rosenberg, Harold. A Note on surfaces with parallel mean curvature. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1195-1197. doi : 10.1016/j.crma.2011.10.012. http://www.numdam.org/articles/10.1016/j.crma.2011.10.012/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004), pp. 141-174
[2] Generalized Hopf differentials, Mat. Contemp., Volume 28 (2005), pp. 1-28
[3] A theorem of Hopf and the Cauchy–Riemann inequality, Comm. Anal. Geom., Volume 15 (2007), pp. 283-298
[4] A Hopf theorem for ambient spaces of dimensions higher than three, J. Differential Geometry, Volume 84 (2010), pp. 1-17
[5] M. Batista, Simons type equation in and and applications, Ann. Inst. Fourier, in press.
[6] Hypersurfaces with constant scalar curvature, Math. Ann., Volume 225 (1977), pp. 195-204
[7] Complete constant mean curvature surfaces in homogeneous spaces, Comment. Math. Helv., Volume 86 (2011), pp. 659-674
[8] On subharmonic functions and differential geometry in the large, Comment. Math. Helv., Volume 32 (1957), pp. 13-71
[9] A formula of Simonsʼ type and hypersurfaces with constant mean curvature, J. Differential Geometry, Volume 3 (1969), pp. 367-377
[10] Minimal varieties in Riemannian manifolds, Ann. of Math., Volume 88 (1968), pp. 62-105
[11] Submanifolds of constant mean curvature, Math. Ann., Volume 205 (1973), pp. 265-280
Cité par Sources :