Partial Differential Equations/Mathematical Physics
Semiclassical approximation and noncommutative geometry
[Approximation semiclassique et géométrie non commutative]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1177-1182.

Nous considérons lʼévolution semiclassique à temps long pour lʼéquation de Schrödinger linéaire. Nous montrons que, dans le cas dʼune dynamique sous-jacente chaotique, le symbole principal dʼune observable est propagé, jusquʼà des temps de lʼordre de 2+ϵ,ϵ>0, par le flot classique sous-jacent, à condition de considérer un calcul symbolique de type Toeplitz que nous précisons et pour lequel le symbole appartient à lʼalgèbre non commutative du feuilletage (fort) instable de la dynamique classique correspondante.

We consider the long time semiclassical evolution for the linear Schrödinger equation. We show that, in the case of chaotic underlying classical dynamics and for times up to 2+ϵ,ϵ>0, the symbol of a propagated observable by the corresponding von Neumann–Heisenberg equation is, in a sense made precise below, precisely obtained by the push-forward of the symbol of the observable at time t=0. The corresponding definition of the symbol calls upon a kind of Toeplitz quantization framework, and the symbol itself is an element of the noncommutative algebra of the (strong) unstable foliation of the underlying dynamics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.011
Paul, Thierry 1

1 CNRS and CMLS École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2011__349_21-22_1177_0,
     author = {Paul, Thierry},
     title = {Semiclassical approximation and noncommutative geometry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1177--1182},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.011/}
}
TY  - JOUR
AU  - Paul, Thierry
TI  - Semiclassical approximation and noncommutative geometry
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1177
EP  - 1182
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.011/
DO  - 10.1016/j.crma.2011.10.011
LA  - en
ID  - CRMATH_2011__349_21-22_1177_0
ER  - 
%0 Journal Article
%A Paul, Thierry
%T Semiclassical approximation and noncommutative geometry
%J Comptes Rendus. Mathématique
%D 2011
%P 1177-1182
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.011/
%R 10.1016/j.crma.2011.10.011
%G en
%F CRMATH_2011__349_21-22_1177_0
Paul, Thierry. Semiclassical approximation and noncommutative geometry. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1177-1182. doi : 10.1016/j.crma.2011.10.011. http://www.numdam.org/articles/10.1016/j.crma.2011.10.011/

[1] Bambusi, D.; Graffi, S.; Paul, T. Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999), pp. 149-160

[2] Bouzouina, A.; Robert, D. Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252

[3] Connes, A. Noncommutative Geometry, Academic Press, Inc., 1994

[4] Connes, A. Sur la thérie non commutative de lʼintégration, Lectures Notes in Math., vol. 725, Springer, Berlin, 1979

[5] Hasselblatt, B.; Katok, A. Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, 1995

[6] T. Paul, in preparation.

[7] Paul, T.; Uribe, A. The semi-classical trace formula and propagation of wave packets, J. Funct. Anal., Volume 132 (1995), pp. 192-249

[8] Schubert, R. Semiclassical wave propagation for large times | arXiv

Cité par Sources :