[Inégalité de Hardy et identité de Pohozaev pour des opérateurs à singularités sur la frontière : Quelques applications]
On considère lʼopérateur de Schrödinger , , lorsque lʼorigine est située sur la frontière dʼun domaine borné et régulier , .
Cette Note a deux objectifs. Premièrement, on montre, dans ce cas, lʼextension de lʼidentité classique de Pohozaev pour le laplacien. Le problème abordé est très lié aux inégalités de Hardy–Poincaré avec des singularités sur la frontière. En second lieu, la nouvelle identité de Pohozaev permet de dʼobtenir la méthode des multiplicateurs pour lʼéquation des ondes et pour lʼéquation de Schrödinger. De cette façon on étend au cas de la singularité frontière les propriétés dʼobservabilité et contrôle pour lʼéquation des ondes classique et pour lʼéquation de Schrödinger bien connues dans le cas dʼune singularité intérieure (Vancostenoble et Zuazua (2009) [16]).
We consider the Schrödinger operator , , when the singularity is located on the boundary of a smooth domain , .
The aim of this Note is two folded. Firstly, we justify the extension of the classical Pohozaev identity for the Laplacian to this case. The problem we address is very much related to Hardy–Poincaré inequalities with boundary singularities. Secondly, the new Pohozaev identity allows us to develop the multiplier method for the wave and the Schrödinger equations. In this way we extend to the case of boundary singularities well known observability and control properties for the classical wave and Schrödinger equations when the singularity is placed in the interior of the domain (Vancostenoble and Zuazua (2009) [16]).
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1167_0, author = {Cazacu, Cristian}, title = {Hardy inequality and {Pohozaev} identity for operators with boundary singularities: {Some} applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {1167--1172}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.009/} }
TY - JOUR AU - Cazacu, Cristian TI - Hardy inequality and Pohozaev identity for operators with boundary singularities: Some applications JO - Comptes Rendus. Mathématique PY - 2011 SP - 1167 EP - 1172 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.009/ DO - 10.1016/j.crma.2011.10.009 LA - en ID - CRMATH_2011__349_21-22_1167_0 ER -
%0 Journal Article %A Cazacu, Cristian %T Hardy inequality and Pohozaev identity for operators with boundary singularities: Some applications %J Comptes Rendus. Mathématique %D 2011 %P 1167-1172 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.009/ %R 10.1016/j.crma.2011.10.009 %G en %F CRMATH_2011__349_21-22_1167_0
Cazacu, Cristian. Hardy inequality and Pohozaev identity for operators with boundary singularities: Some applications. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1167-1172. doi : 10.1016/j.crma.2011.10.009. http://www.numdam.org/articles/10.1016/j.crma.2011.10.009/
[1] A. Adimurthi, C. Cazacu, E. Zuazua, Best constants and Pohozaev identity for Hardy–Sobolev type operators, in preparation.
[2] Control and stabilization for hyperbolic equations, Strasbourg, 1991, SIAM, Philadelphia, PA (1991), pp. 252-266
[3] Extremal functions for Hardyʼs inequality with weight, J. Funct. Anal., Volume 171 (2000) no. 1, pp. 177-191
[4] On Hardy inequalities with singularities on the boundary, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 273-277
[5] Nonlinear elliptic problems with a singular weight on the boundary, Calc. Var., Volume 41 (2011) no. 3–4, pp. 567-586 | DOI
[6] Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, Volume 33 (2008), pp. 10-12 (1996–2019)
[7] Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010 (pp. xxii+749)
[8] M.M. Fall, On the Hardy Poincaré inequality with boundary singularities, Commun. Contemp. Math., in press.
[9] M.M. Fall, R. Musina, Hardy–Poincaré inequality with boundary singularities. Proc. Roy. Soc. Edinburgh, in press.
[10] Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5703-5743
[11] Unique continuation and absence of positive eigenvalues for Schrödinger operators, with an appendix by E.M. Stein, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 463-494
[12] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte (Exact controllability) with appendices by E. Zuazua, C. Bardos, G. Lebeau, J. Rauch, Recherches en Mathématiques Appliquées, Research in Applied Mathematics, vol. 8, Masson, Paris, 1988
[13] Exact controllability for the Schrödinger equation, SIAM J. Control Optim., Volume 32 (1994) no. 1, pp. 24-34
[14] Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009 (pp. xii+483)
[15] Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., Volume 254 (2008) no. 7, pp. 1864-1902
[16] Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1508-1532
[17] Functional aspects of the Hardy inequality. Appearance of a hidden energy | arXiv
[18] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 103-153
Cité par Sources :