Nous construisons une nouvelle fonction de Bellman qui nous permet de donner des estimations précises de la norme des transformées de Riesz dans les espaces pondérés
We give sharp in p and w estimates of operator norms of Riesz transforms in the
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1151_0, author = {Pattakos, Nikolaos and Volberg, Alexander}, title = {A new weighted {Bellman} function}, journal = {Comptes Rendus. Math\'ematique}, pages = {1151--1154}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.007}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.10.007/} }
TY - JOUR AU - Pattakos, Nikolaos AU - Volberg, Alexander TI - A new weighted Bellman function JO - Comptes Rendus. Mathématique PY - 2011 SP - 1151 EP - 1154 VL - 349 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.10.007/ DO - 10.1016/j.crma.2011.10.007 LA - en ID - CRMATH_2011__349_21-22_1151_0 ER -
%0 Journal Article %A Pattakos, Nikolaos %A Volberg, Alexander %T A new weighted Bellman function %J Comptes Rendus. Mathématique %D 2011 %P 1151-1154 %V 349 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.10.007/ %R 10.1016/j.crma.2011.10.007 %G en %F CRMATH_2011__349_21-22_1151_0
Pattakos, Nikolaos; Volberg, Alexander. A new weighted Bellman function. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1151-1154. doi : 10.1016/j.crma.2011.10.007. https://www.numdam.org/articles/10.1016/j.crma.2011.10.007/
[1] Boundary value problems and sharp estimates for the martingale transforms, Ann. Probab., Volume 12 (1984), pp. 647-702
[2] A strong central limit theorem for a class of random surfaces | arXiv
[3] Bellman function, Littlewood–Paley estimates and asymptotics for the Ahlfors–Beurling operator in
[4] An
[5] Heating of the Ahlfors–Beurling operator and estimates of its norms, St. Petersburg Math. J., Volume 15 (2004) no. 4, pp. 563-573 S1061-0022(04)00822-2
[6] N. Pattakos, A. Volberg, Continuity of weighted estimates in
[7] Heating of the Ahlfors–Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J., Volume 112 (2002) no. 2, pp. 281-305
[8] Interpolation of operators with change of measures, Trans. Amer. Math. Soc., Volume 87 (1958) no. 1, pp. 159-172
Cité par Sources :