Mathematical Analysis/Harmonic Analysis
A new weighted Bellman function
[Une nouvelle fonction pondérée de Bellman]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1151-1154.

Nous construisons une nouvelle fonction de Bellman qui nous permet de donner des estimations précises de la norme des transformées de Riesz dans les espaces pondérés Lp(wdx), quand la caractéristique du poids est proche de 1.

We give sharp in p and w estimates of operator norms of Riesz transforms in the Lp(wdx) spaces, when the Ap characteristic of the weight is close to 1 (flat case). This is done by proving the existence of a certain Bellman function.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.007
Pattakos, Nikolaos 1 ; Volberg, Alexander 1

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2011__349_21-22_1151_0,
     author = {Pattakos, Nikolaos and Volberg, Alexander},
     title = {A new weighted {Bellman} function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1151--1154},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.007/}
}
TY  - JOUR
AU  - Pattakos, Nikolaos
AU  - Volberg, Alexander
TI  - A new weighted Bellman function
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1151
EP  - 1154
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.007/
DO  - 10.1016/j.crma.2011.10.007
LA  - en
ID  - CRMATH_2011__349_21-22_1151_0
ER  - 
%0 Journal Article
%A Pattakos, Nikolaos
%A Volberg, Alexander
%T A new weighted Bellman function
%J Comptes Rendus. Mathématique
%D 2011
%P 1151-1154
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.007/
%R 10.1016/j.crma.2011.10.007
%G en
%F CRMATH_2011__349_21-22_1151_0
Pattakos, Nikolaos; Volberg, Alexander. A new weighted Bellman function. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1151-1154. doi : 10.1016/j.crma.2011.10.007. http://www.numdam.org/articles/10.1016/j.crma.2011.10.007/

[1] Burkholder, D. Boundary value problems and sharp estimates for the martingale transforms, Ann. Probab., Volume 12 (1984), pp. 647-702

[2] Conlon, J.G.; Spencer, T. A strong central limit theorem for a class of random surfaces | arXiv

[3] Dragicevic, O.; Volberg, A. Bellman function, Littlewood–Paley estimates and asymptotics for the Ahlfors–Beurling operator in Lp(C), Indiana Univ. Math. J., Volume 54 (2005) no. 4, pp. 971-995

[4] Meyers, N.G. An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), Volume 17 (1963), pp. 189-206

[5] Nazarov, F.; Volberg, A. Heating of the Ahlfors–Beurling operator and estimates of its norms, St. Petersburg Math. J., Volume 15 (2004) no. 4, pp. 563-573 S1061-0022(04)00822-2

[6] N. Pattakos, A. Volberg, Continuity of weighted estimates in Ap norm, Proc. Amer. Math. Soc., forthcoming, article ID: PROC11165.

[7] Petermichl, S.; Volberg, A. Heating of the Ahlfors–Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J., Volume 112 (2002) no. 2, pp. 281-305

[8] Stein, E.; Weiss, G. Interpolation of operators with change of measures, Trans. Amer. Math. Soc., Volume 87 (1958) no. 1, pp. 159-172

Cité par Sources :