Partial Differential Equations
Uniqueness for an ill-posed parabolic system
[Unicité pour un système parabolique mal-posé]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1161-1165.

Lʼobjectif est de prouver lʼunicité de solution pour un système parabolique mal-posé. Ce résultat sert à établir lʼidentifiabilité pour le problème de detection de sources ponctuelles de pollution organique dans les eaux de surface.

The purpose is the uniqueness for an ill-posed parabolic system. This result enables us to state the identifiability for the problem of detecting pointwise organic pollution sources in surface waters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.006
Ben Belgacem, Faker 1

1 LMAC, EA 2222, université de technologie de Compiègne, BP 20529, 60205 Compiègne cedex, France
@article{CRMATH_2011__349_21-22_1161_0,
     author = {Ben Belgacem, Faker},
     title = {Uniqueness for an ill-posed parabolic system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1161--1165},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.006/}
}
TY  - JOUR
AU  - Ben Belgacem, Faker
TI  - Uniqueness for an ill-posed parabolic system
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1161
EP  - 1165
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.006/
DO  - 10.1016/j.crma.2011.10.006
LA  - en
ID  - CRMATH_2011__349_21-22_1161_0
ER  - 
%0 Journal Article
%A Ben Belgacem, Faker
%T Uniqueness for an ill-posed parabolic system
%J Comptes Rendus. Mathématique
%D 2011
%P 1161-1165
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.006/
%R 10.1016/j.crma.2011.10.006
%G en
%F CRMATH_2011__349_21-22_1161_0
Ben Belgacem, Faker. Uniqueness for an ill-posed parabolic system. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1161-1165. doi : 10.1016/j.crma.2011.10.006. http://www.numdam.org/articles/10.1016/j.crma.2011.10.006/

[1] Andrle, M.; Ben Belgacem, F.; El Badia, A. Identification of moving point-wise sources in an advection–dispersion–reaction equation, Inverse Problems, Volume 27 (2011), p. 025007

[2] Bernardi, C.; Canuto, C.; Maday, Y. Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., Volume 25 (1988), pp. 1237-1271

[3] Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991

[4] Dautray, R.; Lions, J.-L. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, Springer-Verlag, 1992

[5] Pazy, A. Semi-groups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983 (pp. 100–101)

[6] Streeter, H.W.; Phelps, E.B. A study of the pollution and natural purification of the Ohio river, US Public Health Bull., Volume 146 (1925)

Cité par Sources :