Algebra/Algebraic Geometry
Incompressibility of orthogonal grassmannians
[Incompressibilité de grassmanniennes orthogonales]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1131-1134.

Nous démontrons la conjecture ci-dessous due à Bryant Mathews (2008). Soit Q la grassmannienne orthogonale des i-plans totalement isotropes dʼune forme quadratique non dégénérée q sur un corps arbitraire (où i est un entier satisfaisant 1i(dimq)/2). Si le degré de tout point fermé sur Q est divisible par 2i et lʼindice de Witt de la forme q au-dessus du corps des fonctions de Q est égal à i, alors la variété Q est 2-incompressible.

We prove the following conjecture due to Bryant Mathews (2008). Let Q be the orthogonal grassmannian of totally isotropic i-planes of a non-degenerate quadratic form q over an arbitrary field (where i is an integer satisfying 1i(dimq)/2). If the degree of each closed point on Q is divisible by 2i and the Witt index of q over the function field of Q is equal to i, then the variety Q is 2-incompressible.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.004
Karpenko, Nikita A. 1

1 UPMC Sorbonne universités, institut de mathématiques de Jussieu, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2011__349_21-22_1131_0,
     author = {Karpenko, Nikita A.},
     title = {Incompressibility of orthogonal grassmannians},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1131--1134},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.004/}
}
TY  - JOUR
AU  - Karpenko, Nikita A.
TI  - Incompressibility of orthogonal grassmannians
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1131
EP  - 1134
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.004/
DO  - 10.1016/j.crma.2011.10.004
LA  - en
ID  - CRMATH_2011__349_21-22_1131_0
ER  - 
%0 Journal Article
%A Karpenko, Nikita A.
%T Incompressibility of orthogonal grassmannians
%J Comptes Rendus. Mathématique
%D 2011
%P 1131-1134
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.004/
%R 10.1016/j.crma.2011.10.004
%G en
%F CRMATH_2011__349_21-22_1131_0
Karpenko, Nikita A. Incompressibility of orthogonal grassmannians. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1131-1134. doi : 10.1016/j.crma.2011.10.004. http://www.numdam.org/articles/10.1016/j.crma.2011.10.004/

[1] Brosnan, P. On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math., Volume 161 (2005) no. 1, pp. 91-111

[2] Chernousov, V.; Merkurjev, A. Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups, Volume 11 (2006) no. 3, pp. 371-386

[3] Elman, R.; Karpenko, N.; Merkurjev, A. The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008

[4] Karpenko, N.; Merkurjev, A. Essential dimension of quadrics, Invent. Math., Volume 153 (2003) no. 2, pp. 361-372

[5] N.A. Karpenko, Canonical dimension, in: Proceedings of the ICM 2010, vol. II, pp. 146–161.

[6] Karpenko, N.A. Incompressibility of generic orthogonal grassmannians, Linear Algebraic Groups and Related Structures (preprint server), Volume 409 (2010) (7 pp)

[7] N.A. Karpenko, Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333 (2009) 18 pp.; J. Reine Angew. Math., in press.

[8] Karpenko, N.A. Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i Analiz, Volume 12 (2000) no. 1, pp. 3-69

[9] Karpenko, N.A. Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A. Suslinʼs Sixtieth Birthday (2010), pp. 371-392 (electronic). With an Appendix by Jean-Pierre Tignol

[10] Karpenko, N.A. Upper motives of outer algebraic groups, Quadratic Forms, Linear Algebraic Groups, and Cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 249-258

[11] Karpenko, N.A.; Merkurjev, A.S. Canonical p-dimension of algebraic groups, Adv. Math., Volume 205 (2006) no. 2, pp. 410-433

[12] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P. The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998 (With a preface in French by J. Tits)

[13] B.G. Mathews, Canonical dimension of projective homogeneous varieties of inner type A and type B, ProQuest LLC, PhD Thesis, University of California, Los Angeles, Ann Arbor, MI, 2009.

[14] A. Vishik, Direct summands in the motives of quadrics, preprint, 1999, 13 pp. Available on the web page of the author.

[15] Vishik, A. Fields of u-invariant 2r+1, Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin, vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 661-685

Cité par Sources :