[Une extension canonique de lʼinégalité de Korn à motivée par un modèle de plasticité à gradient avec rotation plastique]
Nous démontrons une inégalité de type Korn dans pour des champs tensoriels P appliquant Ω dans . De façon plus précise, soit Ω un domaine borné de dont la frontière ∂Ω est Lipschitz continue et connexe. Il existe alors une constante , telle que
(1) |
We prove a Korn-type inequality in for tensor fields P mapping Ω to . More precisely, let be a bounded domain with connected Lipschitz boundary ∂Ω. Then, there exists a constant such that
(1) |
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1251_0, author = {Neff, Patrizio and Pauly, Dirk and Witsch, Karl-Josef}, title = {A canonical extension of {Korn's} first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin}, journal = {Comptes Rendus. Math\'ematique}, pages = {1251--1254}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.10.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/} }
TY - JOUR AU - Neff, Patrizio AU - Pauly, Dirk AU - Witsch, Karl-Josef TI - A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin JO - Comptes Rendus. Mathématique PY - 2011 SP - 1251 EP - 1254 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/ DO - 10.1016/j.crma.2011.10.003 LA - en ID - CRMATH_2011__349_23-24_1251_0 ER -
%0 Journal Article %A Neff, Patrizio %A Pauly, Dirk %A Witsch, Karl-Josef %T A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin %J Comptes Rendus. Mathématique %D 2011 %P 1251-1254 %V 349 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/ %R 10.1016/j.crma.2011.10.003 %G en %F CRMATH_2011__349_23-24_1251_0
Neff, Patrizio; Pauly, Dirk; Witsch, Karl-Josef. A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1251-1254. doi : 10.1016/j.crma.2011.10.003. http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/
[1] On Kornʼs inequality, Chinese Ann. Math., Volume 31B (2010) no. 5, pp. 607-618
[2] A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis, Comput. Methods Appl. Mech. Engrg., Volume 196 (2007) no. 37, pp. 3881-3897
[3] Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin, Math. Mech. Solids, Volume 15 (2010), pp. 691-703
[4] Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986
[5] On Kornʼs first inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh A, Volume 132 (2002), pp. 221-243
[6] Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case, Math. Mod. Meth. Appl. Sci. (M3AS), Volume 19 (2009) no. 2, pp. 1-40
[7] P. Neff, D. Pauly, K.-J. Witsch, A Kornʼs inequality for incompatible tensor fields, in: Proceedings in Applied Mathematics and Mechanics (PAMM), 2011.
[8] Preprint SE-E-737, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml. | arXiv
[9] Preprint SE-E-736, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml. | arXiv
[10] Numerical approximation of incremental infinitesimal gradient plasticity, Internat. J. Numer. Methods Engrg., Volume 77 (2009) no. 3, pp. 414-436 http://www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints/media
[11] Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media, Math. Methods Appl. Sci., Volume 31 (2008), pp. 1509-1543
[12] An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z., Volume 187 (1984), pp. 151-164
[13] Some decomposition theorems and their applications to non-linear potential theory and Hodge theory, Math. Methods Appl. Sci., Volume 12 (1990), pp. 35-53
[14] Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles, Analysis (Munich), Volume 21 (2001), pp. 231-263
[15] Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plasticity, Volume 24 (2008), pp. 55-73
[16] Maxwellʼs boundary value problems on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl., Volume 46 (1974), pp. 410-437
Cité par Sources :