Partial Differential Equations
A canonical extension of Kornʼs first inequality to H(Curl) motivated by gradient plasticity with plastic spin
[Une extension canonique de lʼinégalité de Korn à H(Curl) motivée par un modèle de plasticité à gradient avec rotation plastique]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1251-1254.

Nous démontrons une inégalité de type Korn dans H(Curl;Ω,R3×3) pour des champs tensoriels P appliquant Ω dans R3×3. De façon plus précise, soit Ω un domaine borné de R3 dont la frontière ∂Ω est Lipschitz continue et connexe. Il existe alors une constante c>0, telle que

cPL2(Ω,R3×3)symPL2(Ω,R3×3)+CurlPL2(Ω,R3×3)(1)
est vérifiée pour tous les champs tensoriels PH(Curl;Ω,R3×3), i.e., pour tous les PH(Curl;Ω,R3×3) dont la trace tangentielle sʼannule sur ∂Ω. Ici, rotation et trace tangentielle sont définies ligne par ligne. Pour des champs P compatibles, i.e., P=v, dʼoù CurlP=0, avec vH1(Ω,R3) et de composante vn, telle que vn est normal à ∂Ω, lʼestimation (1) se réduit à
cvL2(Ω,R3×3)symvL2(Ω,R3×3),
une variante non classique de la première inégalité de Korn. Par ailleurs, pour des P anti-symétriques, (1) se réduit à une variante non classique de lʼinégalité de Poincaré. Il en résulte que puisque (1) est compatible avec les conditions aux limites classiques, cette estimation généralise tout à la fois lʼinégalité de Poincaré et la première inégalité de Korn.

We prove a Korn-type inequality in H(Curl;Ω,R3×3) for tensor fields P mapping Ω to R3×3. More precisely, let ΩR3 be a bounded domain with connected Lipschitz boundary ∂Ω. Then, there exists a constant c>0 such that

cPL2(Ω,R3×3)symPL2(Ω,R3×3)+CurlPL2(Ω,R3×3)(1)
holds for all tensor fields PH(Curl;Ω,R3×3), i.e., all PH(Curl;Ω,R3×3) with vanishing tangential trace on ∂Ω. Here, rotation and tangential traces are defined row-wise. For compatible P, i.e., P=v and thus CurlP=0, where vH1(Ω,R3) are vector fields having components vn, for which vn are normal at ∂Ω, the presented estimate (1) reduces to a non-standard variant of Kornʼs first inequality, i.e.,
cvL2(Ω,R3×3)symvL2(Ω,R3×3).
On the other hand, for skew-symmetric P, i.e., symP=0, (1) reduces to a non-standard version of Poincaréʼs estimate. Therefore, since (1) admits the classical boundary conditions our result is a common generalization of these two classical estimates, namely Poincaréʼs resp. Kornʼs first inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.003
Neff, Patrizio 1 ; Pauly, Dirk 1 ; Witsch, Karl-Josef 1

1 Universität Duisburg-Essen, Fakultät für Mathematik, Campus Essen Universitätsstr. 2, 45117 Essen, Germany
@article{CRMATH_2011__349_23-24_1251_0,
     author = {Neff, Patrizio and Pauly, Dirk and Witsch, Karl-Josef},
     title = {A canonical extension of {Korn's} first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1251--1254},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/}
}
TY  - JOUR
AU  - Neff, Patrizio
AU  - Pauly, Dirk
AU  - Witsch, Karl-Josef
TI  - A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1251
EP  - 1254
VL  - 349
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/
DO  - 10.1016/j.crma.2011.10.003
LA  - en
ID  - CRMATH_2011__349_23-24_1251_0
ER  - 
%0 Journal Article
%A Neff, Patrizio
%A Pauly, Dirk
%A Witsch, Karl-Josef
%T A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin
%J Comptes Rendus. Mathématique
%D 2011
%P 1251-1254
%V 349
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/
%R 10.1016/j.crma.2011.10.003
%G en
%F CRMATH_2011__349_23-24_1251_0
Neff, Patrizio; Pauly, Dirk; Witsch, Karl-Josef. A canonical extension of Kornʼs first inequality to $ \mathsf{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1251-1254. doi : 10.1016/j.crma.2011.10.003. http://www.numdam.org/articles/10.1016/j.crma.2011.10.003/

[1] Ciarlet, P.G. On Kornʼs inequality, Chinese Ann. Math., Volume 31B (2010) no. 5, pp. 607-618

[2] Djoko, J.K.; Ebobisse, F.; McBride, A.T.; Reddy, B.D. A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis, Comput. Methods Appl. Mech. Engrg., Volume 196 (2007) no. 37, pp. 3881-3897

[3] Ebobisse, F.; Neff, P. Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin, Math. Mech. Solids, Volume 15 (2010), pp. 691-703

[4] Leis, R. Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986

[5] Neff, P. On Kornʼs first inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh A, Volume 132 (2002), pp. 221-243

[6] Neff, P.; Chełmiński, K.; Alber, H.D. Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case, Math. Mod. Meth. Appl. Sci. (M3AS), Volume 19 (2009) no. 2, pp. 1-40

[7] P. Neff, D. Pauly, K.-J. Witsch, A Kornʼs inequality for incompatible tensor fields, in: Proceedings in Applied Mathematics and Mechanics (PAMM), 2011.

[8] Preprint SE-E-737, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml. | arXiv

[9] Preprint SE-E-736, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml. | arXiv

[10] Neff, P.; Sydow, A.; Wieners, C. Numerical approximation of incremental infinitesimal gradient plasticity, Internat. J. Numer. Methods Engrg., Volume 77 (2009) no. 3, pp. 414-436 http://www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints/media

[11] Pauly, D. Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media, Math. Methods Appl. Sci., Volume 31 (2008), pp. 1509-1543

[12] Picard, R. An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z., Volume 187 (1984), pp. 151-164

[13] Picard, R. Some decomposition theorems and their applications to non-linear potential theory and Hodge theory, Math. Methods Appl. Sci., Volume 12 (1990), pp. 35-53

[14] Picard, R.; Weck, N.; Witsch, K.-J. Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles, Analysis (Munich), Volume 21 (2001), pp. 231-263

[15] Reddy, B.D.; Ebobisse, F.; McBride, A.T. Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plasticity, Volume 24 (2008), pp. 55-73

[16] Weck, N. Maxwellʼs boundary value problems on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl., Volume 46 (1974), pp. 410-437

Cité par Sources :