Combinant les définitions proposées par J. Ball en 1977 et par J. Ball, J.C. Currie, et P.J. Olver en 1981, nous proposons dans cette Note une définition de « fonction polyconvexe sur une surface ». Quand la surface est vue comme la surface moyenne dʼune coque non linéairement élastique et la fonction comme sa densité dʼénergie, on montre quʼil est loisible de supposer en plus que cette fonction est coercive pour des normes de Sobolev convenables et quʼelle satisfait des conditions de croissance particulières qui empêchent les vecteurs des bases covariantes le long de la surface déformée de devenir linéairement dépendants, une condition qui est « lʼanalogue pour une surface » de la condition de préservation de lʼorientation de J. Ball. On montre ensuite quʼune fonctionnelle avec un tel intégrande polyconvexe est faiblement semi-continue inférieurement, ce qui finalement permet dʼétablir lʼexistence de minimiseurs.
Combining the definitions set forth by J. Ball in 1977 and by J. Ball, J.C. Currie, and P.J. Olver in 1981, we propose in this Note a definition of a “polyconvex function on a surface”. When the surface is thought of as the middle surface of a nonlinearly elastic shell and the function as its stored energy function, we show that it is possible to assume in addition that this function is coercive for appropriate Sobolev norms and that it satisfies specific growth conditions that prevent the vectors of the covariant bases along the deformed middle surface to become linearly dependent, a condition that is the “surface analogue” of the orientation-preserving condition of J. Ball. We then show that a functional with such a polyconvex integrand is weakly lower semi-continuous, which eventually allows to establish the existence of minimizers.
Publié le :
@article{CRMATH_2011__349_21-22_1207_0, author = {Ciarlet, Philippe G. and Gogu, Radu and Mardare, Cristinel}, title = {A notion of polyconvex function on a surface suggested by nonlinear shell theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {1207--1211}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.10.002/} }
TY - JOUR AU - Ciarlet, Philippe G. AU - Gogu, Radu AU - Mardare, Cristinel TI - A notion of polyconvex function on a surface suggested by nonlinear shell theory JO - Comptes Rendus. Mathématique PY - 2011 SP - 1207 EP - 1211 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.10.002/ DO - 10.1016/j.crma.2011.10.002 LA - en ID - CRMATH_2011__349_21-22_1207_0 ER -
%0 Journal Article %A Ciarlet, Philippe G. %A Gogu, Radu %A Mardare, Cristinel %T A notion of polyconvex function on a surface suggested by nonlinear shell theory %J Comptes Rendus. Mathématique %D 2011 %P 1207-1211 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.10.002/ %R 10.1016/j.crma.2011.10.002 %G en %F CRMATH_2011__349_21-22_1207_0
Ciarlet, Philippe G.; Gogu, Radu; Mardare, Cristinel. A notion of polyconvex function on a surface suggested by nonlinear shell theory. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1207-1211. doi : 10.1016/j.crma.2011.10.002. http://www.numdam.org/articles/10.1016/j.crma.2011.10.002/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403
[2] Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., Volume 41 (1981), pp. 135-174
[3] Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[4] Mathematical Elasticity, vol. III: Theory of Shells, North-Holland, Amsterdam, 2000
[5] An existence theorem for nonlinearly elastic “flexural” shells, J. Elasticity, Volume 50 (1998), pp. 261-277
[6] Sur les lois de comportement en élasticité non linéaire compressible, C. R. Acad. Sci. Paris Sér. II, Volume 295 (1982), pp. 423-426
[7] P.G. Ciarlet, R. Gogu, C. Mardare, Polyconvexity on a surface and nonlinear shell theory, in preparation.
[8] Direct Methods in the Calculus of Variations, Springer, 2010
[9] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Acad. Sci. Paris Sér. I, Volume 336 (2003), pp. 697-702
[10] On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wet. B, Volume 69 (1966), pp. 1-54
[11] The membrane shell model in nonlinear elasticity: A variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84
[12] Compacité par compensation, Ann. Sc. Norm. Super. Pisa Ser. IV, Volume 5 (1978), pp. 489-507
[13] Foundations of elastic shell theory (Sneddon, I.N.; Hill, R., eds.), Progress in Solid Mechanics, vol. 4, North-Holland, Amsterdam, 1963, pp. 1-90
[14] Non-polyconvexity of the stored energy function of a Saint Venant–Kirchhoff material, Aplikace Mat., Volume 6 (1986), pp. 417-419
[15] Compensated compactness and partial differential equations (Knops, R.J., ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Pitman, 1979, pp. 136-212
[16] The Nonlinear Theory of Shells through Variational Principles, John Wiley, New York, 1995
Cité par Sources :