Statistics
Asymptotic results for the linear parameter estimate in partially linear additive regression model
[Résultats asymptotiques pour lʼestimateur du paramètre linéaire dans le modèle de régression additif partiellement linéaire]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1105-1109.

Cette Note est consacrée à lʼétude de la partie linéaire du modèle de la régression partiellement linéaire défini par Yi=Ziβ+j=1dmj(Xij)+εi, 1in, où Zi=(Zi1,,Zip), Xi=(Xi1,,Xid) sont des vecteurs de variables explicatives, β=(β1,,βp) est un vecteur de paramèters inconnus, m1,,md sont des fonctions réelles univariées inconnues, et ε1,,εn sont les erreurs de modélisation supposées indépendantes de moyennes nulles et de variances finies. En utilisant la méthode du noyau accompagnée de la méthode dʼintégration marginale pour estimer les fonctions (mj)1jd et le critère des moindres carrés pour estimer le paramètre β, nous établissons la normalité asymptotique et la loi du logarithme itéré pour lʼestimateur βˆ de β.

In this Note, we study the linear part of the semi-parametric regression model defined by Yi=Ziβ+j=1dmj(Xij)+εi, 1in, where Zi=(Zi1,,Zip), Xi=(Xi1,,Xid) are vectors of explanatory variables, β=(β1,,βp) is a vector of unknown parameters, m1,,md are unknown univariate real functions, and ε1,,εn are independent random modelling errors with mean zero and finite variances. Using the nonparametric kernel technique combined with the marginal integration method to estimate the functions (mj)1jd and the least-square error criterion to estimate the parameter β, we establish the asymptotic normality together with the iterated logarithm law of the estimate βˆ of β.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.09.010
Chokri, Khalid 1, 2 ; Louani, Djamal 1, 2

1 L.S.T.A., Université de Paris 6, 4, place de Jussieu, 75252 Paris cedex 05, France
2 L.S.T.A., Université de Reims, BP 1039, 51687 Reims cedex 2, France
@article{CRMATH_2011__349_19-20_1105_0,
     author = {Chokri, Khalid and Louani, Djamal},
     title = {Asymptotic results for the linear parameter estimate in partially linear additive regression model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1105--1109},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.09.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.010/}
}
TY  - JOUR
AU  - Chokri, Khalid
AU  - Louani, Djamal
TI  - Asymptotic results for the linear parameter estimate in partially linear additive regression model
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1105
EP  - 1109
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.09.010/
DO  - 10.1016/j.crma.2011.09.010
LA  - en
ID  - CRMATH_2011__349_19-20_1105_0
ER  - 
%0 Journal Article
%A Chokri, Khalid
%A Louani, Djamal
%T Asymptotic results for the linear parameter estimate in partially linear additive regression model
%J Comptes Rendus. Mathématique
%D 2011
%P 1105-1109
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.09.010/
%R 10.1016/j.crma.2011.09.010
%G en
%F CRMATH_2011__349_19-20_1105_0
Chokri, Khalid; Louani, Djamal. Asymptotic results for the linear parameter estimate in partially linear additive regression model. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1105-1109. doi : 10.1016/j.crma.2011.09.010. http://www.numdam.org/articles/10.1016/j.crma.2011.09.010/

[1] Aneiros-Pérez, G.; González-Manteiga, W.; Vieu, P. Estimation and testing in a partial linear regression model under long-memory dependence, Bernoulli, Volume 10 (2004), pp. 49-78

[2] Aneiros-Pérez, G.; Vieu, P. Semi-functional partial linear regression, Statist. Probab. Lett., Volume 76 (2006), pp. 1102-1110

[3] Aneiros-Pérez, G.; Vieu, P. Nonparametric time series prediction: a semi-functional partial linear modeling, J. Multivariate Anal., Volume 99 (2008), pp. 834-857

[4] Camlong-Viot, C. Vers un test dʼadditivité en régression non paramétrique sous des conditions de mélange, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 877-880

[5] Chen, G.; Wang, Z. The multivariate partially linear model with B-spline, Chinese J. Appl. Probab. Statist., Volume 26 (2010), pp. 138-150

[6] Dabo-Niang, S.; Guillas, S. Functional semiparametric partially linear model with autoregressive errors, J. Multivariate Anal., Volume 101 (2010), pp. 307-315

[7] Deheuvels, P.; Mason, D. General asymptotic confidence bands based on kernel-type function estimators, Stat. Inference Stoch. Process., Volume 7 (2004), pp. 225-277

[8] Härdle, W.; Liang, H.; Gao, J. Partially Linear Models, Contributions to Statistics, Physica-Verlag, Heidelberg, 2000

[9] Liang, H. Asymptotic normality of parametric part in partially linear models with measurement error in the nonparametric part, J. Statist. Plann. Inference, Volume 86 (2000), pp. 51-62

[10] Robinson, P. Root-N-consistent semiparametric regression, Econometrica, Volume 56 (1988), pp. 931-954

[11] Stone, C.J. Additive regression and other nonparametric models, Ann. Statist., Volume 13 (1985), pp. 689-705

Cité par Sources :