Partial Differential Equations
Weak solutions to the incompressible Euler equations with vortex sheet initial data
[Solutions faibles des équations dʼEuler incompressibles avec nappe de tourbillon comme donnée initiale]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1063-1066.

Nous construisons une infinité de solutions faibles admissibles des équations dʼEuler incompressibles avec nappes de tourbillons classiques pour données initiales. La construction repose sur la méthode introduite récemment dans De Lellis et Székelyhidi Jr. (2009, 2010) [2,3] faisant appel à lʼintégration convexe. En particulier, la vorticité nʼest pas une mesure bornée. Au lieu de cela, lʼénergie décroît en temps, à cause dʼune zone turbulente, entourant la nappe de tourbillon et augmentant linéairement en temps.

We construct infinitely many admissible weak solutions to the incompressible Euler equations with initial data given by the classical vortex sheet. The construction is based on the method introduced recently in De Lellis and Székelyhidi Jr. (2009, 2010) [2,3] using convex integration. In particular, the vorticity is not a bounded measure. Instead, the energy decreases in time due to a linearly expanding turbulent zone around the vortex sheet.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.09.009
Székelyhidi, László Jr. 1

1 Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 62, 53115 Bonn, Germany
@article{CRMATH_2011__349_19-20_1063_0,
     author = {Sz\'ekelyhidi, L\'aszl\'o Jr.},
     title = {Weak solutions to the incompressible {Euler} equations with vortex sheet initial data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1063--1066},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.09.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.009/}
}
TY  - JOUR
AU  - Székelyhidi, László Jr.
TI  - Weak solutions to the incompressible Euler equations with vortex sheet initial data
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1063
EP  - 1066
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.09.009/
DO  - 10.1016/j.crma.2011.09.009
LA  - en
ID  - CRMATH_2011__349_19-20_1063_0
ER  - 
%0 Journal Article
%A Székelyhidi, László Jr.
%T Weak solutions to the incompressible Euler equations with vortex sheet initial data
%J Comptes Rendus. Mathématique
%D 2011
%P 1063-1066
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.09.009/
%R 10.1016/j.crma.2011.09.009
%G en
%F CRMATH_2011__349_19-20_1063_0
Székelyhidi, László Jr. Weak solutions to the incompressible Euler equations with vortex sheet initial data. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1063-1066. doi : 10.1016/j.crma.2011.09.009. http://www.numdam.org/articles/10.1016/j.crma.2011.09.009/

[1] Brenier, Y.; De Lellis, C.; Székelyhidi, L. Jr. Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys., Volume 305 (2011), pp. 315-361

[2] De Lellis, C.; Székelyhidi, L. Jr. The Euler equations as a differential inclusion, Ann. Math. (2), Volume 170 (2009) no. 3, pp. 1417-1436

[3] De Lellis, C.; Székelyhidi, L. Jr. On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 225-260

[4] Delort, J.-M. Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 553-586

[5] Lions, P.-L. Mathematical Topics in Fluid Mechanics, vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press Oxford University Press, New York, 1996 (Incompressible models, Oxford Science Publications)

[6] Scheffer, V. An inviscid flow with compact support in space–time, J. Geom. Anal., Volume 3 (1993) no. 4, pp. 343-401

[7] Shnirelman, A. On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., Volume 50 (1997) no. 12, pp. 1261-1286

[8] L. Székelyhidi Jr., E. Wiedemann, Young measures generated by ideal incompressible fluid flows, Preprint, 2011.

[9] Wiedemann, E. Existence of weak solutions for the incompressible Euler equations, Annales de lʼInstitut Henri Poincare (C) Non Linear Analysis, Volume 28 (2011) no. 5, pp. 727-730

Cité par Sources :