Nous proposons et analysons un modèle mathématique pour la propagation dʼondes dans des arbres infinis qui sont auto-similaires à lʼinfini. Lʼaccent est mis sur la construction et lʼapproximation de conditions aux limites transparentes.
We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. The emphasis is put on the construction and approximation of transparent boundary conditions.
Accepté le :
Publié le :
@article{CRMATH_2011__349_19-20_1047_0, author = {Joly, Patrick and Semin, Adrien}, title = {Mathematical and numerical modeling of wave propagation in fractal trees}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1051}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.09.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.008/} }
TY - JOUR AU - Joly, Patrick AU - Semin, Adrien TI - Mathematical and numerical modeling of wave propagation in fractal trees JO - Comptes Rendus. Mathématique PY - 2011 SP - 1047 EP - 1051 VL - 349 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.09.008/ DO - 10.1016/j.crma.2011.09.008 LA - en ID - CRMATH_2011__349_19-20_1047_0 ER -
%0 Journal Article %A Joly, Patrick %A Semin, Adrien %T Mathematical and numerical modeling of wave propagation in fractal trees %J Comptes Rendus. Mathématique %D 2011 %P 1047-1051 %V 349 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.09.008/ %R 10.1016/j.crma.2011.09.008 %G en %F CRMATH_2011__349_19-20_1047_0
Joly, Patrick; Semin, Adrien. Mathematical and numerical modeling of wave propagation in fractal trees. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1047-1051. doi : 10.1016/j.crma.2011.09.008. http://www.numdam.org/articles/10.1016/j.crma.2011.09.008/
[1] Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary, J. Comput. Phys., Volume 220 (2007) no. 2, pp. 712-739
[2] Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots, ESAIM Proc., Volume 25 (2008), pp. 44-67
[3] Graph models for waves in thin structures, Waves Random Media, Volume 12 (2002) no. 4, p. R1-R24
[4] Trace theorems for trees, application for the human lung, Netw. Heterog. Media, Volume 4 (2009) no. 3, pp. 469-500
[5] Morphometry of the Human Lung, Springer Verlag/Academic Press, Berlin/New York, 1963
Cité par Sources :