Probability Theory
Reflection coupling and Wasserstein contractivity without convexity
[Couplage de réflection et contractivité de Wasserstein sans convexité]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1101-1104.

On considére diffusions de Langevin sur Rd dans un potentiel U non convex dans un ensemble borné. A lʼaide du couplage de réflection, on observe que ces diffusions sont des contractions pour la distance de Kantorovich–Rubinstein–Wasserstein basée sur une distance concave appropriée, équivalente à la distance Euclidienne. Le choix de la distance est optimisé pour obtenir un grand taux de décroissance exponentielle. Les résultats impliquent bornes optimales pour R,L[0,) et K(0,), indépendamment de la dimension, sous la condition que (xy)(U(x)U(y)) est borné inférieurement par L|xy|2 pour |xy|<R et par K|xy|2 pour |xy|R.

We note that even if convexity of the potential U fails locally, overdamped Langevin diffusions in Rd are contractions w.r.t. the Kantorovich–Rubinstein-Wasserstein distance based on an appropriately chosen concave distance function equivalent to the Euclidean distance. The choice of the distance function is then optimized to obtain a large exponential decay rate. The results yield dimension-independent bounds of optimal order in R,L[0,) and K(0,) if (xy)(U(x)U(y)) is bounded from below by L|xy|2 for |xy|<R and by K|xy|2 for |xy|R.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.09.003
Eberle, Andreas 1

1 University of Bonn, Institute for Applied Mathematics, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2011__349_19-20_1101_0,
     author = {Eberle, Andreas},
     title = {Reflection coupling and {Wasserstein} contractivity without convexity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1101--1104},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.09.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/}
}
TY  - JOUR
AU  - Eberle, Andreas
TI  - Reflection coupling and Wasserstein contractivity without convexity
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1101
EP  - 1104
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/
DO  - 10.1016/j.crma.2011.09.003
LA  - en
ID  - CRMATH_2011__349_19-20_1101_0
ER  - 
%0 Journal Article
%A Eberle, Andreas
%T Reflection coupling and Wasserstein contractivity without convexity
%J Comptes Rendus. Mathématique
%D 2011
%P 1101-1104
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/
%R 10.1016/j.crma.2011.09.003
%G en
%F CRMATH_2011__349_19-20_1101_0
Eberle, Andreas. Reflection coupling and Wasserstein contractivity without convexity. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1101-1104. doi : 10.1016/j.crma.2011.09.003. http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/

[1] Chen, M.F.; Li, S.F. Coupling methods for multidimensional diffusion processes, Ann. Probab., Volume 17 (1989), pp. 151-177

[2] Chen, M.F.; Wang, F.-Y. Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1239-1267

[3] Freidlin, M. Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985

[4] Hairer, M.; Mattingly, J.C. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations, Ann. Probab., Volume 36 (2008), pp. 2050-2091

[5] Lindvall, T.; Rogers, L.C.G. Coupling of multidimensional diffusions by reflection, Ann. Probab., Volume 14 (1986), pp. 860-872

[6] Wang, F.-Y. Functional Inequalities, Markov Processes and Spectral Theory, Science Press, Beijing, 2004

Cité par Sources :