On considére diffusions de Langevin sur dans un potentiel U non convex dans un ensemble borné. A lʼaide du couplage de réflection, on observe que ces diffusions sont des contractions pour la distance de Kantorovich–Rubinstein–Wasserstein basée sur une distance concave appropriée, équivalente à la distance Euclidienne. Le choix de la distance est optimisé pour obtenir un grand taux de décroissance exponentielle. Les résultats impliquent bornes optimales pour et , indépendamment de la dimension, sous la condition que est borné inférieurement par pour et par pour .
We note that even if convexity of the potential U fails locally, overdamped Langevin diffusions in are contractions w.r.t. the Kantorovich–Rubinstein-Wasserstein distance based on an appropriately chosen concave distance function equivalent to the Euclidean distance. The choice of the distance function is then optimized to obtain a large exponential decay rate. The results yield dimension-independent bounds of optimal order in and if is bounded from below by for and by for .
Accepté le :
Publié le :
@article{CRMATH_2011__349_19-20_1101_0, author = {Eberle, Andreas}, title = {Reflection coupling and {Wasserstein} contractivity without convexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1101--1104}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.09.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/} }
TY - JOUR AU - Eberle, Andreas TI - Reflection coupling and Wasserstein contractivity without convexity JO - Comptes Rendus. Mathématique PY - 2011 SP - 1101 EP - 1104 VL - 349 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/ DO - 10.1016/j.crma.2011.09.003 LA - en ID - CRMATH_2011__349_19-20_1101_0 ER -
%0 Journal Article %A Eberle, Andreas %T Reflection coupling and Wasserstein contractivity without convexity %J Comptes Rendus. Mathématique %D 2011 %P 1101-1104 %V 349 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/ %R 10.1016/j.crma.2011.09.003 %G en %F CRMATH_2011__349_19-20_1101_0
Eberle, Andreas. Reflection coupling and Wasserstein contractivity without convexity. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1101-1104. doi : 10.1016/j.crma.2011.09.003. http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/
[1] Coupling methods for multidimensional diffusion processes, Ann. Probab., Volume 17 (1989), pp. 151-177
[2] Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1239-1267
[3] Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985
[4] Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations, Ann. Probab., Volume 36 (2008), pp. 2050-2091
[5] Coupling of multidimensional diffusions by reflection, Ann. Probab., Volume 14 (1986), pp. 860-872
[6] Functional Inequalities, Markov Processes and Spectral Theory, Science Press, Beijing, 2004
Cité par Sources :