[Approche utilisant les puissances fractionnaires dʼopérateurs dans la résolution de quelques EDP elliptiques à coefficients opérateurs variables]
Cette Note est consacrée à lʼétude dʼune équation différentielle complète du second ordre de type elliptique et à coefficients opérateurs variables avec des conditions aux limites de Dirichlet non homogènes. On donne des conditions nécessaires et suffisantes sur les données pour lʼexistence et lʼunicité de la solution stricte en utilisant des hypothèses naturelles sur la différentiabilité des résolvantes des racines carrées des opérateurs caractérisant lʼellipticité. Les techniques utilisées ici sont basées essentiellement sur la théorie des semi-groupes et les puissances fractionnaires dʼopérateurs linéaires.
This Note is devoted to the study of a complete second order differential equation of elliptic type with variable operators coefficients and Dirichlet inhomogeneous boundary conditions. We give necessary and sufficient conditions on the data for the existence and uniqueness of the strict solution by using some natural differentiability assumptions on the resolvent operators of the square roots characterizing the ellipticity. The techniques used here are essentially based on the semigroups theory and the fractional powers of linear operators.
Accepté le :
Publié le :
@article{CRMATH_2011__349_17-18_969_0, author = {Boutaous, Fatiha}, title = {Fractional powers approach of operators for the solvability of some elliptic {PDE's} with variable operators coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {969--972}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.025/} }
TY - JOUR AU - Boutaous, Fatiha TI - Fractional powers approach of operators for the solvability of some elliptic PDEʼs with variable operators coefficients JO - Comptes Rendus. Mathématique PY - 2011 SP - 969 EP - 972 VL - 349 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.025/ DO - 10.1016/j.crma.2011.08.025 LA - en ID - CRMATH_2011__349_17-18_969_0 ER -
%0 Journal Article %A Boutaous, Fatiha %T Fractional powers approach of operators for the solvability of some elliptic PDEʼs with variable operators coefficients %J Comptes Rendus. Mathématique %D 2011 %P 969-972 %V 349 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.025/ %R 10.1016/j.crma.2011.08.025 %G en %F CRMATH_2011__349_17-18_969_0
Boutaous, Fatiha. Fractional powers approach of operators for the solvability of some elliptic PDEʼs with variable operators coefficients. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 969-972. doi : 10.1016/j.crma.2011.08.025. http://www.numdam.org/articles/10.1016/j.crma.2011.08.025/
[1] Some existence and regularity results for abstract non-autonomous parabolic equations, J. Math. Anal. Appl., Volume 99 (1984) no. 1, pp. 9-64
[2] Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., Volume 10 (1960), pp. 419-437
[3] Sommes dʼopérateurs linéaires et equations différentielles opérationnelles, J. Math. Pures Appl. (9), Volume 54 (1975), pp. 305-387
[4] On the solvability and the maximal regularity of complete abstract differential equations of elliptic type, Funkcial. Ekvac., Volume 47 (2004), pp. 423-452
[5] Study of a complete abstract differential equation of elliptic type with variable operators coefficients (Part I), Rev. Mat. Complut., Volume 21 (2008) no. 1, pp. 89-133
[6] Linear Differential Equations in Banach Spaces, Nauka, Moscow, 1967 (English transl. in: AMS, Providence, 1971)
[7] R. Labbas, Problèmes aux limites pour une equation différentielle opérationnelle du second ordre, Thèse dʼétat, Université de Nice, 1987.
[8] Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995
[9] Equations of Evolution, Pitman, London, San Francisco, Melbourne, 1979
Cité par Sources :
☆ This work has been supported in part by the EGIDE grant under the C.M.E.P. Program, Project No. 08 MDU 735.