Algebraic Geometry
Arcs and wedges on rational surface singularities
[Arcs et coins sur une singularité rationnelle de surface]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1083-1087.

Soit (S,P0) une singularité rationnelle de surface sur un corps algébriquement clos k de caractéristique 0, soit να une valuation divisorielle essentielle sur (S,P0), et Pα le point stable de lʼespace des arcs S qui correspond à να. On démontre que tout coin centré en Pα se relève à la désingularisation minimale. Cela démontre le problème de Nash pour les singularités rationnelles de surface, et réduit le problème de Nash pour les surfaces aux singularités quasi-rationnelles qui ne sont pas rationnelles. En caractéristique positive, on donne un contre-exemple au problème de relèvement de k-coins pour une surface dont lʼapplication de Nash est bijective.

Let (S,P0) be a rational surface singularity over an algebraically closed field k of characteristic 0, let να be an essential divisorial valuation over (S,P0), and Pα the stable point of the space of arcs S corresponding to να. We prove that any wedge centered at Pα lifts to the minimal desingularization. This proves the Nash problem for rational surface singularities, and reduces the Nash problem for surfaces to quasirational normal singularities which are not rational. In positive characteristic, we give a counterexample to the k-wedge lifting problem for a surface for which the Nash map is bijective.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.022
Reguera, Ana J. 1

1 Universidad de Valladolid, Dep. de Álgebra, Geometría y Topología, Prado de la Magdalena, 47005 Valladolid, Spain
@article{CRMATH_2011__349_19-20_1083_0,
     author = {Reguera, Ana J.},
     title = {Arcs and wedges on rational surface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1083--1087},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.022/}
}
TY  - JOUR
AU  - Reguera, Ana J.
TI  - Arcs and wedges on rational surface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1083
EP  - 1087
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.022/
DO  - 10.1016/j.crma.2011.08.022
LA  - en
ID  - CRMATH_2011__349_19-20_1083_0
ER  - 
%0 Journal Article
%A Reguera, Ana J.
%T Arcs and wedges on rational surface singularities
%J Comptes Rendus. Mathématique
%D 2011
%P 1083-1087
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.022/
%R 10.1016/j.crma.2011.08.022
%G en
%F CRMATH_2011__349_19-20_1083_0
Reguera, Ana J. Arcs and wedges on rational surface singularities. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1083-1087. doi : 10.1016/j.crma.2011.08.022. http://www.numdam.org/articles/10.1016/j.crma.2011.08.022/

[1] Artin, M. On isolated rational singularities of surfaces, Amer. J. Math., Volume 88 (1966), pp. 129-136

[2] Brieskorn, E. Rationale Singularitäten komplexer Flächen, Inv. Math., Volume 4 (1968), pp. 336-358

[3] Casas-Alvero, E. Singularities of Plane Curves, London Math. Soc. Lecture Note, vol. 276, Cambridge University Press, 2000

[4] Laufer, H. On rational singularities, Amer. J. Math., Volume 94 (1972), pp. 597-608

[5] Lejeune-Jalabert, M.; Reguera, A. Arcs and wedges on sandwiched surface singularities, Amer. J. Math., Volume 121 (1999), pp. 1191-1213

[6] M. Lejeune-Jalabert, A. Reguera, Exceptional divisors which are nor uniruled belong to the image of the Nash map, (2008), J. Inst. Math. Jussieu, in press. | arXiv

[7] Okuma, T. Universal Abelian covers of certain surface singularities, Math. Ann., Volume 334 (2006), pp. 753-773

[8] Reguera, A.J. A curve selection lemma in spaces of arcs and the image of the Nash map, Compositio Math., Volume 142 (2006), pp. 119-130

[9] Reguera, A.J. Towards the singular locus of the space of arcs, Amer. J. Math., Volume 131 (2009) no. 2, pp. 313-350

Cité par Sources :