Mathematical Analysis
Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters
[Analyse asymptotique uniforme des polynômes de Meixner–Pollaczek avec des paramètres variables]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1031-1035.

Dans cette Note, nous effectuons une analyse asymptotique uniforme des polynômes de Meixner–Pollaczek Pn(λn)(z;ϕ) avec un paramètre λn=(n+12)A lorsque n, où A>0 est une constante. Des développements asymptotiques en termes de fonctions paraboliques cylindriques et de fonctions élémentaires sont obtenus de manière uniforme en z dans deux régions qui recouvrent tout le plan complexe.

In this Note, we study the uniform asymptotics of the Meixner–Pollaczek polynomials Pn(λn)(z;ϕ) with varying parameter λn=(n+12)A as n, where A>0 is a constant. Uniform asymptotic expansions in terms of parabolic cylinder functions and elementary functions are obtained for z in two overlapping regions which together cover the whole complex plane.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.020
Wang, Jun 1 ; Qiu, Weiyuan 1 ; Wong, Roderick 2

1 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
2 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
@article{CRMATH_2011__349_19-20_1031_0,
     author = {Wang, Jun and Qiu, Weiyuan and Wong, Roderick},
     title = {Uniform asymptotics for {Meixner{\textendash}Pollaczek} polynomials with varying parameters},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1031--1035},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.020/}
}
TY  - JOUR
AU  - Wang, Jun
AU  - Qiu, Weiyuan
AU  - Wong, Roderick
TI  - Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1031
EP  - 1035
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.020/
DO  - 10.1016/j.crma.2011.08.020
LA  - en
ID  - CRMATH_2011__349_19-20_1031_0
ER  - 
%0 Journal Article
%A Wang, Jun
%A Qiu, Weiyuan
%A Wong, Roderick
%T Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters
%J Comptes Rendus. Mathématique
%D 2011
%P 1031-1035
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.020/
%R 10.1016/j.crma.2011.08.020
%G en
%F CRMATH_2011__349_19-20_1031_0
Wang, Jun; Qiu, Weiyuan; Wong, Roderick. Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1031-1035. doi : 10.1016/j.crma.2011.08.020. http://www.numdam.org/articles/10.1016/j.crma.2011.08.020/

[1] Baik, J.; Suidan, T.M. Random matrix central limit theorems for nonintersecting random walks, Ann. Probab., Volume 35 (2007), pp. 1807-1834

[2] Chen, Y.; Ismail, M.E.H. Asymptotics of the extreme zeros of the Meixner–Pollaczek polynomials, J. Comput. Appl. Math., Volume 82 (1997), pp. 59-78

[3] Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann–Hilbert problems, asymptotic for the mKdV equation, Ann. of Math., Volume 137 (1993) no. 2, pp. 295-368

[4] Fokas, A.S.; Its, A.R.; Kitaev, A.V. The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys., Volume 147 (1992), pp. 395-430

[5] Krasovsky, I.V. Asymptotic distribution of zeros of polynomials satisfying difference equations, J. Comput. Appl. Math., Volume 150 (2003), pp. 57-70

[6] Kuijlaars, A.B.J.; McLaughlin, K. Riemann–Hilbert analysis for Laguerre polynomials with large negative parameters, Comput. Meth. Funct. Theory, Volume 1 (2001), pp. 205-233

[7] Li, X.; Wong, R. On the asymptotics of the Meixner–Pollaczek polynomials and their zeros, Constructive Approximation, Volume 17 (2001), pp. 59-90

[8] Meixner, J. Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, J. London Math. Soc., Volume 9 (1934), pp. 6-13

[9] Olver, F.W.J. Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders, J. Res. Nat. Bur. Standards Sect. B, Volume 63B (1959), pp. 131-169

[10] Pollaczek, F. Sur une famille de polynômes orthogonaux qui contient les polynômes dʼHermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris, Ser. I, Volume 230 (1950), pp. 1563-1565

[11] Qiu, W.Y.; Wong, R. Asymptotic expansions for Riemann–Hilbert problems, Anal. Appl., Volume 6 (2008), pp. 269-298

[12] Wong, R.; Zhang, W.J. Uniform asymptotics for Jacobi polynomials with varying large negative parameters – a Riemann–Hilbert approach, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 2663-2694

Cité par Sources :