Nous décomposons la représentation adjointe de par une approche purement combinatoire basée sur lʼintroduction dʼun certain sous-ensemble du groupe de Weyl appelé Weyl alternation set associé à une paire de poids intégraux dominants. La cardinalité de Weyl alternation set associé à la plus haute racine et au poids zéro de est donnée par le nombre rth de Fibonacci. Nous obtenons alors les exposants de de ce point de vue.
We decompose the adjoint representation of by a purely combinatorial approach based on the introduction of a certain subset of the Weyl group called the Weyl alternation set associated to a pair of dominant integral weights. The cardinality of the Weyl alternation set associated to the highest root and zero weight of is given by the rth Fibonacci number. We then obtain the exponents of from this point of view.
Accepté le :
Publié le :
@article{CRMATH_2011__349_17-18_935_0, author = {Harris, Pamela E.}, title = {On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the {Fibonacci} numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {935--937}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/} }
TY - JOUR AU - Harris, Pamela E. TI - On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers JO - Comptes Rendus. Mathématique PY - 2011 SP - 935 EP - 937 VL - 349 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/ DO - 10.1016/j.crma.2011.08.017 LA - en ID - CRMATH_2011__349_17-18_935_0 ER -
%0 Journal Article %A Harris, Pamela E. %T On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers %J Comptes Rendus. Mathématique %D 2011 %P 935-937 %V 349 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/ %R 10.1016/j.crma.2011.08.017 %G en %F CRMATH_2011__349_17-18_935_0
Harris, Pamela E. On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 935-937. doi : 10.1016/j.crma.2011.08.017. http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/
[1] C. Cochet, Vector partition function and representation theory, Conference Proceedings Formal Power Series and Algebraic Combinatorics, Taormina, Sicile, 2005, 12 pages.
[2] Symmetry, Representations and Invariants, Springer, New York, 2009
[3] Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990
[4] A formula for the multiplicity of a weight, Proc. Natl. Acad. Sci. USA, Volume 44 (1958), pp. 588-589
[5] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032
[6] Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque, Volume 101–102 (1983), pp. 208-229
[7] Fibonacciʼs Liber Abaci, Springer-Verlag, New York, 2002
Cité par Sources :