Combinatorics/Lie Algebras
On the adjoint representation of sln and the Fibonacci numbers
[Sur la représentation adjointe de sln et les nombres de Fibonacci]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 935-937.

Nous décomposons la représentation adjointe de slr+1=slr+1(C) par une approche purement combinatoire basée sur lʼintroduction dʼun certain sous-ensemble du groupe de Weyl appelé Weyl alternation set associé à une paire de poids intégraux dominants. La cardinalité de Weyl alternation set associé à la plus haute racine et au poids zéro de slr+1 est donnée par le nombre rth de Fibonacci. Nous obtenons alors les exposants de slr+1 de ce point de vue.

We decompose the adjoint representation of slr+1=slr+1(C) by a purely combinatorial approach based on the introduction of a certain subset of the Weyl group called the Weyl alternation set associated to a pair of dominant integral weights. The cardinality of the Weyl alternation set associated to the highest root and zero weight of slr+1 is given by the rth Fibonacci number. We then obtain the exponents of slr+1 from this point of view.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.017
Harris, Pamela E. 1

1 University of Wisconsin, Milwaukee Department of Mathematical Sciences, P.O. Box 0413, Milwaukee, WI 53201, USA
@article{CRMATH_2011__349_17-18_935_0,
     author = {Harris, Pamela E.},
     title = {On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the {Fibonacci} numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {935--937},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/}
}
TY  - JOUR
AU  - Harris, Pamela E.
TI  - On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 935
EP  - 937
VL  - 349
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/
DO  - 10.1016/j.crma.2011.08.017
LA  - en
ID  - CRMATH_2011__349_17-18_935_0
ER  - 
%0 Journal Article
%A Harris, Pamela E.
%T On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers
%J Comptes Rendus. Mathématique
%D 2011
%P 935-937
%V 349
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/
%R 10.1016/j.crma.2011.08.017
%G en
%F CRMATH_2011__349_17-18_935_0
Harris, Pamela E. On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 935-937. doi : 10.1016/j.crma.2011.08.017. http://www.numdam.org/articles/10.1016/j.crma.2011.08.017/

[1] C. Cochet, Vector partition function and representation theory, Conference Proceedings Formal Power Series and Algebraic Combinatorics, Taormina, Sicile, 2005, 12 pages.

[2] Goodman, R.; Wallach, N.R. Symmetry, Representations and Invariants, Springer, New York, 2009

[3] Humphreys, J.E. Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990

[4] Kostant, B. A formula for the multiplicity of a weight, Proc. Natl. Acad. Sci. USA, Volume 44 (1958), pp. 588-589

[5] Kostant, B. The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032

[6] Lusztig, G. Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque, Volume 101–102 (1983), pp. 208-229

[7] Sigler, L.E. Fibonacciʼs Liber Abaci, Springer-Verlag, New York, 2002

Cité par Sources :