Nous prouvons la conjecture dʼisométrie bornée proposée par F. Lalonde et L. Polterovich pour une classe spéciale de variétés symplectiques fermées.
We prove the bounded isometry conjecture proposed by F. Lalonde and L. Polterovich for a special class of closed symplectic manifolds.
Accepté le :
Publié le :
@article{CRMATH_2011__349_19-20_1097_0, author = {Pedroza, Andr\'es}, title = {On the bounded isometry conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {1097--1100}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.08.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/} }
TY - JOUR AU - Pedroza, Andrés TI - On the bounded isometry conjecture JO - Comptes Rendus. Mathématique PY - 2011 SP - 1097 EP - 1100 VL - 349 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/ DO - 10.1016/j.crma.2011.08.016 LA - en ID - CRMATH_2011__349_19-20_1097_0 ER -
Pedroza, Andrés. On the bounded isometry conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1097-1100. doi : 10.1016/j.crma.2011.08.016. http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/
[1] C. Campos-Apanco, A. Pedroza, Bounded symplectic diffeomorphisms and split flux groups, Proc. of Amer. Math. Soc., in press.
[2] Bi-invariant metrics on the group of symplectomorphisms, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3343-3357
[3] The bounded isometry conjecture for the Kodaira–Thurston manifold and 4-torus, Israel J. Math., Volume 176 (2010), pp. 285-306
[4] Stabilization of symplectic inequalities and applications, Amer. Math. Soc. Transl., Volume 196 (1999), pp. 63-72
[5] Symplectic diffeomorphisms as isometries of Hoferʼs norm, Topology, Volume 36 (1997), pp. 711-727
[6] Introduction to Symplectic Topology, Oxford University Press, 1994
[7] The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001
Cité par Sources :