Differential Geometry
On the bounded isometry conjecture
[Sur la conjecture dʼisométrie bornée]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1097-1100.

Nous prouvons la conjecture dʼisométrie bornée proposée par F. Lalonde et L. Polterovich pour une classe spéciale de variétés symplectiques fermées.

We prove the bounded isometry conjecture proposed by F. Lalonde and L. Polterovich for a special class of closed symplectic manifolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.016
Pedroza, Andrés 1

1 Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo No. 340, Colima, Col., Mexico 28045
@article{CRMATH_2011__349_19-20_1097_0,
     author = {Pedroza, Andr\'es},
     title = {On the bounded isometry conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1097--1100},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/}
}
TY  - JOUR
AU  - Pedroza, Andrés
TI  - On the bounded isometry conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1097
EP  - 1100
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/
DO  - 10.1016/j.crma.2011.08.016
LA  - en
ID  - CRMATH_2011__349_19-20_1097_0
ER  - 
%0 Journal Article
%A Pedroza, Andrés
%T On the bounded isometry conjecture
%J Comptes Rendus. Mathématique
%D 2011
%P 1097-1100
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/
%R 10.1016/j.crma.2011.08.016
%G en
%F CRMATH_2011__349_19-20_1097_0
Pedroza, Andrés. On the bounded isometry conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1097-1100. doi : 10.1016/j.crma.2011.08.016. http://www.numdam.org/articles/10.1016/j.crma.2011.08.016/

[1] C. Campos-Apanco, A. Pedroza, Bounded symplectic diffeomorphisms and split flux groups, Proc. of Amer. Math. Soc., in press.

[2] Han, Z. Bi-invariant metrics on the group of symplectomorphisms, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3343-3357

[3] Han, Z. The bounded isometry conjecture for the Kodaira–Thurston manifold and 4-torus, Israel J. Math., Volume 176 (2010), pp. 285-306

[4] Lalonde, F.; Pestieau, C. Stabilization of symplectic inequalities and applications, Amer. Math. Soc. Transl., Volume 196 (1999), pp. 63-72

[5] Lalonde, F.; Polterovich, L. Symplectic diffeomorphisms as isometries of Hoferʼs norm, Topology, Volume 36 (1997), pp. 711-727

[6] McDuff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford University Press, 1994

[7] Polterovich, L. The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001

Cité par Sources :