Numerical Analysis/Mathematical Problems in Mechanics
Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh
[Optimisation topologique et géométrique de structures élastiques par déformation exacte de maillage simplicial]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 999-1003.

On présente dans cette note une méthode dʼoptimisation structurale qui sʼappuie sur deux manières complémentaires de représenter des formes : dʼune part, elles sont maillées exactement afin que lʼévaluation des performances mécaniques par éléments finis soit précise ; dʼautre part, on utilise leur représentation à lʼaide dʼune fonction de lignes de niveaux pour les déformer suivant le gradient de forme. Lʼingrédient crucial est un algorithme de remaillage qui permet de construire un maillage, de qualité appropriée pour les calculs numériques, à partir dʼune fonction ligne de niveaux continue et affine par morceaux sur un maillage non structuré. Par conséquent, notre approche peut être vue à la fois comme une méthode dʼoptimisation géométrique (puisque les structures sont maillées exactement) et comme une méthode dʼoptimisation topologique (puisque la topologie des formes successives peut changer grâce à lʼutilisation de lʼalgorithme des lignes de niveaux).

We propose a method for structural optimization that relies on two alternative descriptions of shapes: on the one hand, they are exactly meshed so that mechanical evaluations by finite elements are accurate; on the other hand, we resort to a level-set characterization to describe their deformation along the shape gradient. The key ingredient is a meshing algorithm for building a mesh, suitable for numerical computations, out of a piecewise linear level-set function on an unstructured mesh. Therefore, our approach is at the same time a geometric optimization method (since shapes are exactly meshed) and a topology optimization method (since the topology of successive shapes can change thanks to the power of the level-set method).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.012
Allaire, Grégoire 1 ; Dapogny, Charles 2, 3 ; Frey, Pascal 3

1 Centre de mathématiques appliquées (UMR 7641), École Polytechnique, 91128 Palaiseau, France
2 Renault DREAM-DELTʼA, 78288 Guyancourt, France
3 UPMC Univ Paris 06, UMR 7598, laboratoire J.-L. Lions, 75005 Paris, France
@article{CRMATH_2011__349_17-18_999_0,
     author = {Allaire, Gr\'egoire and Dapogny, Charles and Frey, Pascal},
     title = {Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {999--1003},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.012/}
}
TY  - JOUR
AU  - Allaire, Grégoire
AU  - Dapogny, Charles
AU  - Frey, Pascal
TI  - Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 999
EP  - 1003
VL  - 349
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.012/
DO  - 10.1016/j.crma.2011.08.012
LA  - en
ID  - CRMATH_2011__349_17-18_999_0
ER  - 
%0 Journal Article
%A Allaire, Grégoire
%A Dapogny, Charles
%A Frey, Pascal
%T Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh
%J Comptes Rendus. Mathématique
%D 2011
%P 999-1003
%V 349
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.012/
%R 10.1016/j.crma.2011.08.012
%G en
%F CRMATH_2011__349_17-18_999_0
Allaire, Grégoire; Dapogny, Charles; Frey, Pascal. Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 999-1003. doi : 10.1016/j.crma.2011.08.012. http://www.numdam.org/articles/10.1016/j.crma.2011.08.012/

[1] Allaire, G. Conception optimale de structures, Mathématiques & Applications, vol. 58, Springer Verlag, Heidelberg, 2006

[2] Allaire, G.; Jouve, F.; Toader, A.M. A level-set method for shape optimization, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 1125-1130

[3] Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using shape sensitivity analysis and a level-set method, J. Comput. Phys., Volume 194 (2004), pp. 363-393

[4] Allaire, G.; de Gournay, F.; Jouve, F.; Toader, A.M. Structural optimization using topological and shape sensitivity analysis via a level-set method, Control Cybernet., Volume 34 (2005), pp. 59-80

[5] Burger, M. A framework for the construction of level-set methods for shape optimization and reconstruction, Interfaces Free Bound., Volume 5 (2003), pp. 301-329

[6] Chopp, D. Computing minimal surfaces via level-set curvature flow, J. Comput. Phys., Volume 106 (1993), pp. 77-91

[7] C. Dapogny, P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation, Calcolo, 2010, submitted for publication.

[8] de Gournay, F. Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., Volume 45 (2006) no. 1, pp. 343-367

[9] Eschenauer, H.; Kobelev, V.; Schumacher, A. Bubble method for topology and shape optimization of structures, Struct. Optimization, Volume 8 (1994), pp. 42-51

[10] Frey, P.J.; George, P.L. Mesh Generation: Application to Finite Elements, Wiley, London, 2008

[11] Garreau, S.; Guillaume, Ph.; Masmoudi, M. The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim., Volume 39 (2001), pp. 1756-1778

[12] Kimmel, R.; Sethian, J.A. Computing geodesic paths on manifolds, Proc. Nat. Acad. Sci., Volume 95 (1998), pp. 8431-8435

[13] F. Murat, J. Simon, Sur le contrôle par un domaine géométrique, Technical report RR-76015, Laboratoire dʼAnalyse Numérique, 1976.

[14] Osher, S.J.; Sethian, J.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49

[15] Pironneau, O. The Finite Element Methods for Fluids, Wiley, New York, 1989

[16] Sokołowski, J.; Żochowski, A. Topological derivatives of shape functionals for elasticity systems, Mech. Structures Mach., Volume 29 (2001) no. 3, pp. 331-349

[17] Sokolowski, J.; Zolesio, J.-P. Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Ser. Comput. Math., vol. 10, Springer, Berlin, 1992

[18] Strain, J. Semi-Lagrangian methods for level set equations, J. Comput. Phys., Volume 151 (1999), pp. 498-533

[19] Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 227-246

Cité par Sources :