Nous analysons des objectifs
We analyze objectives
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1145_0, author = {Nikolova, Mila}, title = {Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty}, journal = {Comptes Rendus. Math\'ematique}, pages = {1145--1150}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.08.011}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.08.011/} }
TY - JOUR AU - Nikolova, Mila TI - Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty JO - Comptes Rendus. Mathématique PY - 2011 SP - 1145 EP - 1150 VL - 349 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.08.011/ DO - 10.1016/j.crma.2011.08.011 LA - en ID - CRMATH_2011__349_21-22_1145_0 ER -
%0 Journal Article %A Nikolova, Mila %T Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty %J Comptes Rendus. Mathématique %D 2011 %P 1145-1150 %V 349 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.08.011/ %R 10.1016/j.crma.2011.08.011 %G en %F CRMATH_2011__349_21-22_1145_0
Nikolova, Mila. Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1145-1150. doi : 10.1016/j.crma.2011.08.011. https://www.numdam.org/articles/10.1016/j.crma.2011.08.011/
[1] Iterative thresholding for sparse approximations, Journal of Fourier Analysis and Applications, Volume 14 (2008) no. 4–6, pp. 629-654
[2] From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, Volume 51 (2009) no. 1, pp. 34-81
[3] Adaptive greedy approximations, Constructive Approximation, Volume 13 (1997) no. 1, pp. 57-98
[4] Ideal spatial adaptation by wavelet shrinkage, Biometrika, Volume 81 (1994) no. 3, pp. 425-455
[5] Recovering sparse signals with a certain family of non-convex penalties and DC programming, IEEE Transactions on Signal Processing, Volume 57 (2009) no. 12, pp. 4686-4698
[6] Signal reconstruction from noisy random projections, IEEE Transactions on Information Theory, Volume 52 (2006) no. 9, pp. 4036-4048
[7] Variable selection via a combination of the
[8] A unified approach to model selection and sparse recovery using regularized least squares, The Annals of Statistics, Volume 37 (2009) no. 6A
[9] A Wavelet Tour of Signal Processing (The Sparse Way), Academic Press, London, 2008
[10] Subset Selection in Regression, Chapman and Hall, London, UK, 2002
[11] M. Nikolova, On the minimizers of least squares regularized with
[12] Combined SVM-based feature selection and classification, Machine Learning, Volume 61 (2005), pp. 129-150
[13] Just relax: convex programming methods for identifying sparse signals in noise, IEEE Transactions on Information Theory, Volume 52 (2006) no. 3, pp. 1030-1051
Cité par Sources :