Nous analysons des objectifs combinant une fidélité aux données quadratique et une pénalisation . Les données d sont générées par une matrice A de dimension et de rang M où . Nous donnons une analyse détaillée du problème de minimisation. Nous établissons un critère permettant de retrouver un vecteur original dont la longueur du support ne dépasse pas comme un minimiseur (local) strict de où .
We analyze objectives combining a quadratic data-fidelity and a weighted penalty. Data d are generated using a full column rank matrix A with . We provide a detailed analysis of the minimization problem. We exhibit a criterion enabling to recover exactly an original vector with support shorter than as a strict (local) minimizer of where .
Accepté le :
Publié le :
@article{CRMATH_2011__349_21-22_1145_0, author = {Nikolova, Mila}, title = {Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty}, journal = {Comptes Rendus. Math\'ematique}, pages = {1145--1150}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.08.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.011/} }
TY - JOUR AU - Nikolova, Mila TI - Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty JO - Comptes Rendus. Mathématique PY - 2011 SP - 1145 EP - 1150 VL - 349 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.011/ DO - 10.1016/j.crma.2011.08.011 LA - en ID - CRMATH_2011__349_21-22_1145_0 ER -
%0 Journal Article %A Nikolova, Mila %T Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty %J Comptes Rendus. Mathématique %D 2011 %P 1145-1150 %V 349 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.011/ %R 10.1016/j.crma.2011.08.011 %G en %F CRMATH_2011__349_21-22_1145_0
Nikolova, Mila. Solve exactly an under determined linear system by minimizing least squares regularized with an $ {\ell }_{0}$ penalty. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1145-1150. doi : 10.1016/j.crma.2011.08.011. http://www.numdam.org/articles/10.1016/j.crma.2011.08.011/
[1] Iterative thresholding for sparse approximations, Journal of Fourier Analysis and Applications, Volume 14 (2008) no. 4–6, pp. 629-654
[2] From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, Volume 51 (2009) no. 1, pp. 34-81
[3] Adaptive greedy approximations, Constructive Approximation, Volume 13 (1997) no. 1, pp. 57-98
[4] Ideal spatial adaptation by wavelet shrinkage, Biometrika, Volume 81 (1994) no. 3, pp. 425-455
[5] Recovering sparse signals with a certain family of non-convex penalties and DC programming, IEEE Transactions on Signal Processing, Volume 57 (2009) no. 12, pp. 4686-4698
[6] Signal reconstruction from noisy random projections, IEEE Transactions on Information Theory, Volume 52 (2006) no. 9, pp. 4036-4048
[7] Variable selection via a combination of the and penalties, Journal of Computational and Graphical Statistics, Volume 16 (2007) no. 4, pp. 782-798
[8] A unified approach to model selection and sparse recovery using regularized least squares, The Annals of Statistics, Volume 37 (2009) no. 6A
[9] A Wavelet Tour of Signal Processing (The Sparse Way), Academic Press, London, 2008
[10] Subset Selection in Regression, Chapman and Hall, London, UK, 2002
[11] M. Nikolova, On the minimizers of least squares regularized with norm, Technical report, 2011.
[12] Combined SVM-based feature selection and classification, Machine Learning, Volume 61 (2005), pp. 129-150
[13] Just relax: convex programming methods for identifying sparse signals in noise, IEEE Transactions on Information Theory, Volume 52 (2006) no. 3, pp. 1030-1051
Cité par Sources :