Nous montrons que tout domaine de Reinhardt borné et hyperconvexe est approché extérieurement par des polyèdres polynomiaux spéciaux définis par des applications polynomiales homogènes. Ceci se fait à lʼaide dʼune certaine approximation de la fonction de Green pluricomplexe du domaine avec pôle à lʼorigine.
We show that every bounded hyperconvex Reinhardt domain can be approximated by special polynomial polyhedra defined by homogeneous polynomial mappings. This is achieved by means of approximation of the pluricomplex Green function of the domain with pole at the origin.
Accepté le :
Publié le :
@article{CRMATH_2011__349_17-18_965_0, author = {Rashkovskii, Alexander and Zakharyuta, Vyacheslav}, title = {Special polyhedra for {Reinhardt} domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {965--968}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/} }
TY - JOUR AU - Rashkovskii, Alexander AU - Zakharyuta, Vyacheslav TI - Special polyhedra for Reinhardt domains JO - Comptes Rendus. Mathématique PY - 2011 SP - 965 EP - 968 VL - 349 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/ DO - 10.1016/j.crma.2011.08.009 LA - en ID - CRMATH_2011__349_17-18_965_0 ER -
%0 Journal Article %A Rashkovskii, Alexander %A Zakharyuta, Vyacheslav %T Special polyhedra for Reinhardt domains %J Comptes Rendus. Mathématique %D 2011 %P 965-968 %V 349 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/ %R 10.1016/j.crma.2011.08.009 %G en %F CRMATH_2011__349_17-18_965_0
Rashkovskii, Alexander; Zakharyuta, Vyacheslav. Special polyhedra for Reinhardt domains. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 965-968. doi : 10.1016/j.crma.2011.08.009. http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/
[1] Width asymptotics for a pair of Reinhardt domains, Ann. Polon. Math., Volume 78 (2002), pp. 31-38
[2] On Lelong–Bremermann lemma, Proc. AMS, Volume 136 (2008) no. 5, pp. 1733-1742
[3] A Hilbert lemniscate theorem in , Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 6, pp. 2191-2220
[4] Convexité polynomiale, polyhèdres polynomiaux spéciaux et applications, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 11, pp. 825-830
[5] Polynomial convexity, special polynomial polyhedra and the pluricomplex Green function for a compact set in , J. Math. Pures Appl., Volume 91 (2009), pp. 364-383
[6] Potential Theory in the Complex Plane, Cambridge University Press, 1995
[7] V.P. Zahariuta, Spaces of analytic functions and maximal plurisubharmonic functions, D.Sci. Dissertation, Rostov-on-Don, 1984.
[8] V. Zahariuta, Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis, vol. 1, 1994, pp. 74–146.
[9] On approximation by special analytic polyhedral pairs, Ann. Polon. Math., Volume 80 (2003), pp. 243-256
Cité par Sources :