Complex Analysis
Special polyhedra for Reinhardt domains
[Polyèdres spéciaux pour des domaines de Reinhardt]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 965-968.

Nous montrons que tout domaine de Reinhardt borné et hyperconvexe est approché extérieurement par des polyèdres polynomiaux spéciaux définis par des applications polynomiales homogènes. Ceci se fait à lʼaide dʼune certaine approximation de la fonction de Green pluricomplexe du domaine avec pôle à lʼorigine.

We show that every bounded hyperconvex Reinhardt domain can be approximated by special polynomial polyhedra defined by homogeneous polynomial mappings. This is achieved by means of approximation of the pluricomplex Green function of the domain with pole at the origin.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.009
Rashkovskii, Alexander 1 ; Zakharyuta, Vyacheslav 2

1 Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
2 Sabanci University, 34956 Tuzla, Istanbul, Turkey
@article{CRMATH_2011__349_17-18_965_0,
     author = {Rashkovskii, Alexander and Zakharyuta, Vyacheslav},
     title = {Special polyhedra for {Reinhardt} domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {965--968},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/}
}
TY  - JOUR
AU  - Rashkovskii, Alexander
AU  - Zakharyuta, Vyacheslav
TI  - Special polyhedra for Reinhardt domains
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 965
EP  - 968
VL  - 349
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/
DO  - 10.1016/j.crma.2011.08.009
LA  - en
ID  - CRMATH_2011__349_17-18_965_0
ER  - 
%0 Journal Article
%A Rashkovskii, Alexander
%A Zakharyuta, Vyacheslav
%T Special polyhedra for Reinhardt domains
%J Comptes Rendus. Mathématique
%D 2011
%P 965-968
%V 349
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/
%R 10.1016/j.crma.2011.08.009
%G en
%F CRMATH_2011__349_17-18_965_0
Rashkovskii, Alexander; Zakharyuta, Vyacheslav. Special polyhedra for Reinhardt domains. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 965-968. doi : 10.1016/j.crma.2011.08.009. http://www.numdam.org/articles/10.1016/j.crma.2011.08.009/

[1] Aytuna, A.; Rashkovskii, A.; Zahariuta, V. Width asymptotics for a pair of Reinhardt domains, Ann. Polon. Math., Volume 78 (2002), pp. 31-38

[2] Aytuna, A.; Zakharyuta, V. On Lelong–Bremermann lemma, Proc. AMS, Volume 136 (2008) no. 5, pp. 1733-1742

[3] Bloom, T.; Levenberg, N.; Lyubarskii, Yu. A Hilbert lemniscate theorem in C2, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 6, pp. 2191-2220

[4] Nivoche, S. Convexité polynomiale, polyhèdres polynomiaux spéciaux et applications, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 11, pp. 825-830

[5] Nivoche, S. Polynomial convexity, special polynomial polyhedra and the pluricomplex Green function for a compact set in Cn, J. Math. Pures Appl., Volume 91 (2009), pp. 364-383

[6] Ransford, T. Potential Theory in the Complex Plane, Cambridge University Press, 1995

[7] V.P. Zahariuta, Spaces of analytic functions and maximal plurisubharmonic functions, D.Sci. Dissertation, Rostov-on-Don, 1984.

[8] V. Zahariuta, Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis, vol. 1, 1994, pp. 74–146.

[9] Zahariuta, V. On approximation by special analytic polyhedral pairs, Ann. Polon. Math., Volume 80 (2003), pp. 243-256

Cité par Sources :