Numerical Analysis/Mathematical Problems in Mechanics
Displacement-velocity correction schemes for incompressible fluid–structure interaction
[Schémas de correction de déplacement-vitesse en interaction fluide–une structure incompressible]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 1011-1015.

Nous proposons une nouvelle classe de schémas de couplage explicite pour lʼinteraction entre un fluide incompressible et une structure élastique dans le cas où la structure nʼest pas nécessairement mince. On énonce un résultat de stabilité général pour ces nouveaux schémas et on analyse numériquement leur précision.

We propose a new class of time-marching schemes for the explicit coupling of an incompressible fluid and an elastic solid (not necessarily thin). We state a general energy-based stability result and illustrate the accuracy of the different variants in a numerical benchmark.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.004
Fernández, Miguel A. 1 ; Mullaert, Jimmy 1

1 INRIA, Rocquencourt BP 105, 78153 Le Chesnay cedex, France
@article{CRMATH_2011__349_17-18_1011_0,
     author = {Fern\'andez, Miguel A. and Mullaert, Jimmy},
     title = {Displacement-velocity correction schemes for incompressible fluid{\textendash}structure interaction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1015},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/}
}
TY  - JOUR
AU  - Fernández, Miguel A.
AU  - Mullaert, Jimmy
TI  - Displacement-velocity correction schemes for incompressible fluid–structure interaction
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1011
EP  - 1015
VL  - 349
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/
DO  - 10.1016/j.crma.2011.08.004
LA  - en
ID  - CRMATH_2011__349_17-18_1011_0
ER  - 
%0 Journal Article
%A Fernández, Miguel A.
%A Mullaert, Jimmy
%T Displacement-velocity correction schemes for incompressible fluid–structure interaction
%J Comptes Rendus. Mathématique
%D 2011
%P 1011-1015
%V 349
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/
%R 10.1016/j.crma.2011.08.004
%G en
%F CRMATH_2011__349_17-18_1011_0
Fernández, Miguel A.; Mullaert, Jimmy. Displacement-velocity correction schemes for incompressible fluid–structure interaction. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 1011-1015. doi : 10.1016/j.crma.2011.08.004. http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/

[1] Badia, S.; Nobile, F.; Vergara, C. Fluid–structure partitioned procedures based on Robin transmission conditions, J. Comp. Phys., Volume 227 (2008), pp. 7027-7051

[2] Burman, E.; Fernández, M. Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis, SIAM J. Numer. Anal., Volume 47 (2008/09) no. 1, pp. 409-439

[3] Burman, E.; Fernández, M. Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg., Volume 198 (2009) no. 5–8, pp. 766-784

[4] Fernández, M. Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 7–8, pp. 473-477

[5] Fernández, M.; Gerbeau, J.-F. Algorithms for fluid–structure interaction problems, Cardiovascular Mathematics, MS&A. Model. Simul. Appl., vol. 1, Springer, 2009, pp. 307-346

[6] M. Fernández, J. Mullaert, Displacement-velocity correction schemes for incompressible fluid–structure interaction: Stability analysis and numerics, in preparation.

[7] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S. Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J. Comp. Phys., Volume 228 (2009) no. 18, pp. 6916-6937

[8] Hughes, T. The Finite Element Method, Prentice Hall, 1987

[9] Pironneau, O.; Hecht, F.; Le Hyaric, A.; Morice, J. Freefem++ www.freefem.org/ff++

[10] Thomée, V. Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006

Cité par Sources :