[Schémas de correction de déplacement-vitesse en interaction fluide–une structure incompressible]
Nous proposons une nouvelle classe de schémas de couplage explicite pour lʼinteraction entre un fluide incompressible et une structure élastique dans le cas où la structure nʼest pas nécessairement mince. On énonce un résultat de stabilité général pour ces nouveaux schémas et on analyse numériquement leur précision.
We propose a new class of time-marching schemes for the explicit coupling of an incompressible fluid and an elastic solid (not necessarily thin). We state a general energy-based stability result and illustrate the accuracy of the different variants in a numerical benchmark.
Accepté le :
Publié le :
@article{CRMATH_2011__349_17-18_1011_0, author = {Fern\'andez, Miguel A. and Mullaert, Jimmy}, title = {Displacement-velocity correction schemes for incompressible fluid{\textendash}structure interaction}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1015}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/} }
TY - JOUR AU - Fernández, Miguel A. AU - Mullaert, Jimmy TI - Displacement-velocity correction schemes for incompressible fluid–structure interaction JO - Comptes Rendus. Mathématique PY - 2011 SP - 1011 EP - 1015 VL - 349 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/ DO - 10.1016/j.crma.2011.08.004 LA - en ID - CRMATH_2011__349_17-18_1011_0 ER -
%0 Journal Article %A Fernández, Miguel A. %A Mullaert, Jimmy %T Displacement-velocity correction schemes for incompressible fluid–structure interaction %J Comptes Rendus. Mathématique %D 2011 %P 1011-1015 %V 349 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/ %R 10.1016/j.crma.2011.08.004 %G en %F CRMATH_2011__349_17-18_1011_0
Fernández, Miguel A.; Mullaert, Jimmy. Displacement-velocity correction schemes for incompressible fluid–structure interaction. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 1011-1015. doi : 10.1016/j.crma.2011.08.004. http://www.numdam.org/articles/10.1016/j.crma.2011.08.004/
[1] Fluid–structure partitioned procedures based on Robin transmission conditions, J. Comp. Phys., Volume 227 (2008), pp. 7027-7051
[2] Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis, SIAM J. Numer. Anal., Volume 47 (2008/09) no. 1, pp. 409-439
[3] Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg., Volume 198 (2009) no. 5–8, pp. 766-784
[4] Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 7–8, pp. 473-477
[5] Algorithms for fluid–structure interaction problems, Cardiovascular Mathematics, MS&A. Model. Simul. Appl., vol. 1, Springer, 2009, pp. 307-346
[6] M. Fernández, J. Mullaert, Displacement-velocity correction schemes for incompressible fluid–structure interaction: Stability analysis and numerics, in preparation.
[7] Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow, J. Comp. Phys., Volume 228 (2009) no. 18, pp. 6916-6937
[8] The Finite Element Method, Prentice Hall, 1987
[9] Freefem++ www.freefem.org/ff++
[10] Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006
Cité par Sources :