Number Theory
Analytic functions over Zp and p-regular sequences
[Fonctions analytiques sur Zp et suites p-régulières]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 947-952.

Soit p un nombre premier. Dans ce travail, nous caractérisons les fonctions analytiques f:ZpCp sans zéros dans N pour lesquelles la suite (vp(f(n)))n0 est p-régulière. Ensuite nous appliquons notre caractérisation pour étudier les suites récurrentes linéaires quadratiques.

Let p be a prime number. In this work we characterize all the analytic functions f:ZpCp without roots in N for which the sequence (vp(f(n)))n0 is p-regular. Then we apply our characterization to study quadratic linear recurrent sequences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.08.001
Shu, Zhang 1 ; Yao, Jia-Yan 1

1 Department of Mathematics, Tsinghua University, 100084 Beijing, PR China
@article{CRMATH_2011__349_17-18_947_0,
     author = {Shu, Zhang and Yao, Jia-Yan},
     title = {Analytic functions over $ {\mathbb{Z}}_{p}$ and \protect\emph{p}-regular sequences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {947--952},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/}
}
TY  - JOUR
AU  - Shu, Zhang
AU  - Yao, Jia-Yan
TI  - Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 947
EP  - 952
VL  - 349
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/
DO  - 10.1016/j.crma.2011.08.001
LA  - en
ID  - CRMATH_2011__349_17-18_947_0
ER  - 
%0 Journal Article
%A Shu, Zhang
%A Yao, Jia-Yan
%T Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences
%J Comptes Rendus. Mathématique
%D 2011
%P 947-952
%V 349
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/
%R 10.1016/j.crma.2011.08.001
%G en
%F CRMATH_2011__349_17-18_947_0
Shu, Zhang; Yao, Jia-Yan. Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 947-952. doi : 10.1016/j.crma.2011.08.001. http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/

[1] Allouche, J.-P.; Shallit, J.O. The ring of k-regular sequence, Theoret. Comput. Sci., Volume 98 (1992), pp. 163-197

[2] Allouche, J.-P.; Shallit, J.O. The ring of k-regular sequence II, Theoret. Comput. Sci., Volume 307 (2003), pp. 3-29

[3] Allouche, J.-P.; Shallit, J.O. Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003

[4] Amice, Y. Les Nombres p-adiques, Presses Universitaires de France, 1975

[5] Bell, J.P. p-adic valuations and k-regular sequences, Discrete Math., Volume 307 (2007), pp. 3070-3075

[6] Medina, L.A.; Rowland, E.S. p-regularity of the p-adic valuation of the Fibonacci sequence | arXiv

[7] Weiss, E. Algebraic Number Theory, Dover, 1998

Cité par Sources :