Soit p un nombre premier. Dans ce travail, nous caractérisons les fonctions analytiques sans zéros dans pour lesquelles la suite est p-régulière. Ensuite nous appliquons notre caractérisation pour étudier les suites récurrentes linéaires quadratiques.
Let p be a prime number. In this work we characterize all the analytic functions without roots in for which the sequence is p-regular. Then we apply our characterization to study quadratic linear recurrent sequences.
Accepté le :
Publié le :
@article{CRMATH_2011__349_17-18_947_0, author = {Shu, Zhang and Yao, Jia-Yan}, title = {Analytic functions over $ {\mathbb{Z}}_{p}$ and \protect\emph{p}-regular sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {947--952}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/} }
TY - JOUR AU - Shu, Zhang AU - Yao, Jia-Yan TI - Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences JO - Comptes Rendus. Mathématique PY - 2011 SP - 947 EP - 952 VL - 349 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/ DO - 10.1016/j.crma.2011.08.001 LA - en ID - CRMATH_2011__349_17-18_947_0 ER -
%0 Journal Article %A Shu, Zhang %A Yao, Jia-Yan %T Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences %J Comptes Rendus. Mathématique %D 2011 %P 947-952 %V 349 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/ %R 10.1016/j.crma.2011.08.001 %G en %F CRMATH_2011__349_17-18_947_0
Shu, Zhang; Yao, Jia-Yan. Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 947-952. doi : 10.1016/j.crma.2011.08.001. http://www.numdam.org/articles/10.1016/j.crma.2011.08.001/
[1] The ring of k-regular sequence, Theoret. Comput. Sci., Volume 98 (1992), pp. 163-197
[2] The ring of k-regular sequence II, Theoret. Comput. Sci., Volume 307 (2003), pp. 3-29
[3] Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003
[4] Les Nombres p-adiques, Presses Universitaires de France, 1975
[5] p-adic valuations and k-regular sequences, Discrete Math., Volume 307 (2007), pp. 3070-3075
[6] p-regularity of the p-adic valuation of the Fibonacci sequence | arXiv
[7] Algebraic Number Theory, Dover, 1998
Cité par Sources :