Des bornes ponctuelles par potentiels de Riesz semblables à celles disponibles pour lʼéquation de Poisson sont valables pour des équations du type du p-laplacien.
Pointwise gradient bounds via Riesz potentials, like those available for the Poisson equation, actually hold for p-Laplacian type equations.
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_889_0, author = {Kuusi, Tuomo and Mingione, Giuseppe}, title = {A surprising linear type estimate for nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--892}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.025/} }
TY - JOUR AU - Kuusi, Tuomo AU - Mingione, Giuseppe TI - A surprising linear type estimate for nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2011 SP - 889 EP - 892 VL - 349 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.025/ DO - 10.1016/j.crma.2011.07.025 LA - en ID - CRMATH_2011__349_15-16_889_0 ER -
%0 Journal Article %A Kuusi, Tuomo %A Mingione, Giuseppe %T A surprising linear type estimate for nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2011 %P 889-892 %V 349 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.07.025/ %R 10.1016/j.crma.2011.07.025 %G en %F CRMATH_2011__349_15-16_889_0
Kuusi, Tuomo; Mingione, Giuseppe. A surprising linear type estimate for nonlinear elliptic equations. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 889-892. doi : 10.1016/j.crma.2011.07.025. http://www.numdam.org/articles/10.1016/j.crma.2011.07.025/
[1] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989), pp. 149-169
[2] Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, Volume 17 (1992), pp. 641-655
[3] On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., Volume 115 (1993), pp. 1107-1134
[4] Gradient estimates via non-linear potentials, Amer. J. Math., Volume 133 (2011), pp. 1093-1149
[5] Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., Volume 259 (2010), pp. 2961-2998
[6] Projections onto gradient fields and -estimates for degenerated elliptic operators, Studia Math., Volume 75 (1983), pp. 293-312
[7] Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV), Volume 19 (1992), pp. 591-613
[8] The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., Volume 172 (1994), pp. 137-161
[9] A note on the Wolff potential estimate for solutions to elliptic equations involving measures, Adv. Calc. Var., Volume 3 (2010), pp. 99-113
[10] T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, submitted for publication.
[11] Gradient estimates below the duality exponent, Math. Ann., Volume 346 (2010), pp. 571-627
[12] Gradient potential estimates, J. Eur. Math. Soc., Volume 13 (2011), pp. 459-486
[13] Quasilinear and Hessian equations of Lane–Emden type, Ann. of Math. (II), Volume 168 (2008), pp. 859-914
[14] On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., Volume 124 (2002), pp. 369-410
Cité par Sources :