Le résultat de régularité suivant a lieu : Si un champ de gradient
We state the following regularity result: if a two-dimensional gradient vector field
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_883_0, author = {Ignat, Radu}, title = {Gradient vector fields with values into $ {S}^{1}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {883--887}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.024}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.07.024/} }
TY - JOUR AU - Ignat, Radu TI - Gradient vector fields with values into $ {S}^{1}$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 883 EP - 887 VL - 349 IS - 15-16 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.07.024/ DO - 10.1016/j.crma.2011.07.024 LA - en ID - CRMATH_2011__349_15-16_883_0 ER -
Ignat, Radu. Gradient vector fields with values into $ {S}^{1}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 883-887. doi : 10.1016/j.crma.2011.07.024. https://www.numdam.org/articles/10.1016/j.crma.2011.07.024/
[1] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[2]
[3]
[4] Lifting of BV functions with values in
[5] 2-d stability of the Néel wall, Calc. Var. Partial Differential Equations, Volume 27 (2006), pp. 233-253
[6] A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1408-1460
[7] Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998
[8] Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125
[9] The space
[10] R. Ignat, Two-dimensional unit-length vector fields of vanishing divergence, submitted for publication.
[11] Vortex energy and 360° Néel walls in thin-film micromagnetics, Comm. Pure Appl. Math., Volume 63 (2010), pp. 1677-1724
[12] A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 909-956
[13] Line-energy Ginzburg–Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 1 (2002), pp. 187-202
[14] Dense subsets of
Cité par Sources :