Le résultat de régularité suivant a lieu : Si un champ de gradient est à valeurs dans le cercle unité et appartient à (ou ) alors v est localement Lipschitz en dehors dʼun nombre localement fini de points singuliers. Ensuite, des résultats de densité sont énoncés pour cette classe de champs de gradient.
We state the following regularity result: if a two-dimensional gradient vector field with values into the unit circle belongs to (or ) then v is locally Lipschitz except at a locally finite number of vortices. We also state approximation results for such vector fields.
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_883_0, author = {Ignat, Radu}, title = {Gradient vector fields with values into $ {S}^{1}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {883--887}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.024/} }
TY - JOUR AU - Ignat, Radu TI - Gradient vector fields with values into $ {S}^{1}$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 883 EP - 887 VL - 349 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.024/ DO - 10.1016/j.crma.2011.07.024 LA - en ID - CRMATH_2011__349_15-16_883_0 ER -
Ignat, Radu. Gradient vector fields with values into $ {S}^{1}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 883-887. doi : 10.1016/j.crma.2011.07.024. http://www.numdam.org/articles/10.1016/j.crma.2011.07.024/
[1] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[2] maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 1-115
[3] -maps with values into , Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100
[4] Lifting of BV functions with values in , C. R. Math. Acad. Sci. Paris, Volume 337 (2003), pp. 159-164
[5] 2-d stability of the Néel wall, Calc. Var. Partial Differential Equations, Volume 27 (2006), pp. 233-253
[6] A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1408-1460
[7] Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998
[8] Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125
[9] The space : minimal connection and optimal lifting, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 283-302
[10] R. Ignat, Two-dimensional unit-length vector fields of vanishing divergence, submitted for publication.
[11] Vortex energy and 360° Néel walls in thin-film micromagnetics, Comm. Pure Appl. Math., Volume 63 (2010), pp. 1677-1724
[12] A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 909-956
[13] Line-energy Ginzburg–Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 1 (2002), pp. 187-202
[14] Dense subsets of , Ann. Global Anal. Geom., Volume 18 (2000), pp. 517-528
Cité par Sources :