Algebraic Geometry/Differential Geometry
Holomorphic Cartan geometries on uniruled surfaces
[Géométries de Cartan holomorphes des surfaces uniréglées]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 893-896.

Dans cette Note nous classifions les géométries de Cartan holomorphes sur toute surface complexe compacte contenant une courbe rationnelle.

We classify holomorphic Cartan geometries on every compact complex surface which contains a rational curve.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.07.021
McKay, Benjamin 1

1 School of Mathematical Sciences, University College Cork, Cork, Ireland
@article{CRMATH_2011__349_15-16_893_0,
     author = {McKay, Benjamin},
     title = {Holomorphic {Cartan} geometries on uniruled surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--896},
     publisher = {Elsevier},
     volume = {349},
     number = {15-16},
     year = {2011},
     doi = {10.1016/j.crma.2011.07.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.021/}
}
TY  - JOUR
AU  - McKay, Benjamin
TI  - Holomorphic Cartan geometries on uniruled surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 893
EP  - 896
VL  - 349
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.07.021/
DO  - 10.1016/j.crma.2011.07.021
LA  - en
ID  - CRMATH_2011__349_15-16_893_0
ER  - 
%0 Journal Article
%A McKay, Benjamin
%T Holomorphic Cartan geometries on uniruled surfaces
%J Comptes Rendus. Mathématique
%D 2011
%P 893-896
%V 349
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.07.021/
%R 10.1016/j.crma.2011.07.021
%G en
%F CRMATH_2011__349_15-16_893_0
McKay, Benjamin. Holomorphic Cartan geometries on uniruled surfaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 893-896. doi : 10.1016/j.crma.2011.07.021. http://www.numdam.org/articles/10.1016/j.crma.2011.07.021/

[1] Biswas, Indranil; McKay, Benjamin Holomorphic Cartan geometries and rational curves, May 2010 | arXiv

[2] Goldman, William M. Locally homogeneous geometric manifolds (Bhatia, Rajendra, ed.), Proceedings of the International Congress of Mathematicians, Hyderabad, vol. 2, Hindawi, 2010, pp. 717-744

[3] Huckleberry, Alan T. The classification of homogeneous surfaces, Expo. Math., Volume 4 (1986) no. 4, pp. 289-334

[4] Mostow, George Daniel The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2), Volume 52 (1950), pp. 606-636 MR 0048464 (14,18d)

[5] Olver, Peter J. Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 (MR 96i:58005)

[6] Sharpe, Richard W. Differential Geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997 (Cartanʼs generalization of Kleinʼs Erlangen program, with a foreword by S.S. Chern), MR MR1453120 (98m:53033)

Cité par Sources :