Des courbures de Cartan–Tanaka explicites, dont lʼannulation identique caractérise la sphéricité, sont fournies en termes du jet dʼordre 6 dʼune fonction graphante pour une hypersurface de classe strictement pseudoconvexe.
Explicit Cartan–Tanaka curvatures, the vanishing of which characterizes sphericity, are provided in terms of the 6-th order jet of a graphing function for a strongly pseudoconvex hypersurface .
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_845_0, author = {Aghasi, Mansour and Merker, Jo\"el and Sabzevari, Masoud}, title = {Effective {Cartan{\textendash}Tanaka} connections for $ {\mathcal{C}}^{6}$-smooth strongly pseudoconvex hypersurfaces $ {M}^{3}\subset {\mathbb{C}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {845--848}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.020/} }
TY - JOUR AU - Aghasi, Mansour AU - Merker, Joël AU - Sabzevari, Masoud TI - Effective Cartan–Tanaka connections for $ {\mathcal{C}}^{6}$-smooth strongly pseudoconvex hypersurfaces $ {M}^{3}\subset {\mathbb{C}}^{2}$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 845 EP - 848 VL - 349 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.020/ DO - 10.1016/j.crma.2011.07.020 LA - en ID - CRMATH_2011__349_15-16_845_0 ER -
%0 Journal Article %A Aghasi, Mansour %A Merker, Joël %A Sabzevari, Masoud %T Effective Cartan–Tanaka connections for $ {\mathcal{C}}^{6}$-smooth strongly pseudoconvex hypersurfaces $ {M}^{3}\subset {\mathbb{C}}^{2}$ %J Comptes Rendus. Mathématique %D 2011 %P 845-848 %V 349 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.07.020/ %R 10.1016/j.crma.2011.07.020 %G en %F CRMATH_2011__349_15-16_845_0
Aghasi, Mansour; Merker, Joël; Sabzevari, Masoud. Effective Cartan–Tanaka connections for $ {\mathcal{C}}^{6}$-smooth strongly pseudoconvex hypersurfaces $ {M}^{3}\subset {\mathbb{C}}^{2}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 845-848. doi : 10.1016/j.crma.2011.07.020. http://www.numdam.org/articles/10.1016/j.crma.2011.07.020/
[1] M. Aghasi, B. Alizadeh, J. Merker, M. Sabzevari, A Gröbner-bases algorithm for the computation of the cohomology of Lie (super) algebras, , 23 pp. | arXiv
[2] M. Aghasi, J. Merker, M. Sabzevari, Effective Cartan–Tanaka connections on strongly pseudoconvex hypersurfaces , http://ariv.org/abs/1104.1509, 113 pp.
[3] Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, J. Math. Phys., Volume 14 (2007), pp. 121-133 (in Russian)
[4] Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., Volume 29 (2000), pp. 453-505
[5] Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes II, Ann. Sc. Norm. Super. Pisa, Volume 4 (1932), pp. 17-90
[6] From Cartan to Tanaka: getting real in the complex world, Notices of the AMS, Volume 58 (2011), pp. 20-27
[7] On the partial algebraicity of holomorphic mappings between two real algebraic sets, Bull. Soc. Math. France, Volume 129 (2001), pp. 547-591
[8] On the local geometry of generic submanifolds of and the analytic reflection principle, J. Math. Sci. (N. Y.), Volume 125 (2005), pp. 751-824
[9] Lie symmetries and CR geometry, J. Math. Sci. (N. Y.), Volume 154 (2008), pp. 817-922
[10] Nonrigid spherical real analytic hypersurfaces in , Complex Var. Elliptic Equ., Volume 55 (2010) no. 12, pp. 1155-1182
[11] Holomorphic extension of CR functions, envelopes of holomorphy and removable singularities, Int. Math. Res. Surv. (2006) (Article ID 28295, 287 pp)
[12] Differential Geometry, Cartanʼs Generalization of Kleinʼs Erlangen Program, Springer, Berlin, 1997
[13] On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ., Volume 10 (1970), pp. 1-82
Cité par Sources :