Nous annonçons de nouveaux résultats concernant le comportement asymptotique des nombres de Betti des espaces localement symétriques de rang supérieur lorsque leurs volumes tendent vers lʼinfini. Notre résultat principal – une version uniforme du théorème dʼapproximation de Lück (1994) [10] – est plus fort que la majoration linéaire en le volume obtenue par Gromov dans Ballmann et al. (1985) [3].
Lʼidée de base est dʼadapter la théorie de la convergence locale, initialement introduite pour les suites de graphes de degré borné par Benjamimi et Schramm, à des suites de variétés riemanniennes. Lʼutilisation de théorèmes de rigidité nous permet de montrer que lorsque le volume tend vers lʼinfini, les variétés convergent localement vers le revêtement universel de manière assez forte pour en déduire la convergence des nombres de Betti normalisés par le volume.
We announce new results concerning the asymptotic behavior of the Betti numbers of higher rank locally symmetric spaces as their volumes tend to infinity. Our main theorem is a uniform version of the Lück Approximation Theorem (Lück, 1994 [10]) which is much stronger than the linear upper bounds on Betti numbers given by Gromov in Ballmann et al. (1985) [3].
The basic idea is to adapt the theory of local convergence, originally introduced for sequences of graphs of bounded degree by Benjamini and Schramm, to sequences of Riemannian manifolds. Using rigidity theory we are able to show that when the volume tends to infinity, the manifolds locally converge to the universal cover in a sufficiently strong manner that allows us to derive the convergence of the normalized Betti numbers.
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_831_0, author = {Abert, Miklos and Bergeron, Nicolas and Biringer, Ian and Gelander, Tsachik and Nikolov, Nikolay and Raimbault, Jean and Samet, Iddo}, title = {On the growth of {Betti} numbers of locally symmetric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {831--835}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.013/} }
TY - JOUR AU - Abert, Miklos AU - Bergeron, Nicolas AU - Biringer, Ian AU - Gelander, Tsachik AU - Nikolov, Nikolay AU - Raimbault, Jean AU - Samet, Iddo TI - On the growth of Betti numbers of locally symmetric spaces JO - Comptes Rendus. Mathématique PY - 2011 SP - 831 EP - 835 VL - 349 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.013/ DO - 10.1016/j.crma.2011.07.013 LA - en ID - CRMATH_2011__349_15-16_831_0 ER -
%0 Journal Article %A Abert, Miklos %A Bergeron, Nicolas %A Biringer, Ian %A Gelander, Tsachik %A Nikolov, Nikolay %A Raimbault, Jean %A Samet, Iddo %T On the growth of Betti numbers of locally symmetric spaces %J Comptes Rendus. Mathématique %D 2011 %P 831-835 %V 349 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.07.013/ %R 10.1016/j.crma.2011.07.013 %G en %F CRMATH_2011__349_15-16_831_0
Abert, Miklos; Bergeron, Nicolas; Biringer, Ian; Gelander, Tsachik; Nikolov, Nikolay; Raimbault, Jean; Samet, Iddo. On the growth of Betti numbers of locally symmetric spaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 831-835. doi : 10.1016/j.crma.2011.07.013. http://www.numdam.org/articles/10.1016/j.crma.2011.07.013/
[1] Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault, Iddo Samet, in preparation.
[2] Miklos Abert, Yair Glasner, Balint Virag, The measurable Kesten theorem, Preprint.
[3] Manifolds of Nonpositive Curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston Inc., Boston, MA, 1985
[4] -index and the Selberg trace formula, J. Funct. Anal., Volume 53 (1983) no. 2, pp. 151-201
[5] Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 23 (2001) no. 6, p. 13 (electronic)
[6] The asymptotic growth of torsion homology for arithmetic groups | arXiv
[7] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2), Volume 72 (1960), pp. 179-188
[8] Limite dʼensembles et géométrie des nombres, Bull. Soc. Math. France, Volume 78 (1950), pp. 143-151
[9] Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515
[10] Approximating -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481
[11] Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 17, Springer-Verlag, Berlin, 1991
[12] Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., Volume 113 (2002) no. 1, pp. 133-192
[13] Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2), Volume 139 (1994) no. 3, pp. 723-747
Cité par Sources :