[Solutions numériques des équations différentielles stochastiques rétrogrades : « A finite transposition method »]
Dans cette Note, nous présentons une nouvelle méthode pour résoudre numériquement les équations différentielles stochastiques rétrogrades. Notre méthode ressemble à la méthode des éléments finis qui permet de résoudre numériquement les équations aux dérivées partielles déterministes.
In this Note, we present a new numerical method for solving backward stochastic differential equations. Our method can be viewed as an analogue of the classical finite element method solving deterministic partial differential equations.
Accepté le :
Publié le :
@article{CRMATH_2011__349_15-16_901_0, author = {Wang, Penghui and Zhang, Xu}, title = {Numerical solutions of backward stochastic differential equations: {A} finite transposition method}, journal = {Comptes Rendus. Math\'ematique}, pages = {901--903}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.011/} }
TY - JOUR AU - Wang, Penghui AU - Zhang, Xu TI - Numerical solutions of backward stochastic differential equations: A finite transposition method JO - Comptes Rendus. Mathématique PY - 2011 SP - 901 EP - 903 VL - 349 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.011/ DO - 10.1016/j.crma.2011.07.011 LA - en ID - CRMATH_2011__349_15-16_901_0 ER -
%0 Journal Article %A Wang, Penghui %A Zhang, Xu %T Numerical solutions of backward stochastic differential equations: A finite transposition method %J Comptes Rendus. Mathématique %D 2011 %P 901-903 %V 349 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.07.011/ %R 10.1016/j.crma.2011.07.011 %G en %F CRMATH_2011__349_15-16_901_0
Wang, Penghui; Zhang, Xu. Numerical solutions of backward stochastic differential equations: A finite transposition method. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 901-903. doi : 10.1016/j.crma.2011.07.011. http://www.numdam.org/articles/10.1016/j.crma.2011.07.011/
[1] J.-M. Bismut, Analyse convexe et probabilitiés, PhD thesis, Faculté des Sciences de Paris, Paris, France, 1973.
[2] Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs, Radon Ser. Comp. Appl. Math., Volume 8 (2009), pp. 1-34
[3] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978
[4] Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991
[5] The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, John Wiley, 1992
[6] Well-posedness of backward stochastic differential equations with general filtration (preprint, see) | arXiv
[7] Numerical method for backward stochastic differential equations, Ann. Appl. Probab., Volume 12 (2000), pp. 302-316
[8] Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch. Comput. Methods Eng., Volume 16 (2009), pp. 251-285
[9] Adapted solution of backward stochastic equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
[10] Numerical algorithms for 1-d backward stochastic differential equations: convergence and simulations, ESAIM: M2AN, Volume 45 (2011), pp. 335-360
[11] P. Wang, X. Zhang, Numerical analysis on backward stochastic differential equations by a finite transposition method, preprint.
[12] A numerical scheme for BSDEs, Ann. Appl. Probab., Volume 14 (2004), pp. 459-488
Cité par Sources :