On prouve que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial.
On considère des ondes de surface élastiques de la forme, sur :
On prouve que, en général, le correcteur nʼest pas purement localisé près de la frontière, cʼest-à-dire nʼest pas nul. dépend de la variable lente y et ne décroît pas vers 0 lorsque Y tend vers +∞, même si les termes source sont exponentiellement décroissants vers 0.
We prove that fast oscillatory elastic surface waves can produce nontrivial internal nonoscillatory displacements.
We consider elastic surface waves of the form, in :
We prove that, in general, the corrector is not purely localized near the boundary, that is does not vanish. depends on the slow variable y and does not decay to 0 when Y tends to +∞, even if the source terms are exponentially decaying to 0.
Accepté le :
Publié le :
@article{CRMATH_2011__349_23-24_1239_0, author = {Marcou, Alice}, title = {Internal rectification for elastic surface waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {1239--1244}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.07.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.008/} }
TY - JOUR AU - Marcou, Alice TI - Internal rectification for elastic surface waves JO - Comptes Rendus. Mathématique PY - 2011 SP - 1239 EP - 1244 VL - 349 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.07.008/ DO - 10.1016/j.crma.2011.07.008 LA - en ID - CRMATH_2011__349_23-24_1239_0 ER -
Marcou, Alice. Internal rectification for elastic surface waves. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1239-1244. doi : 10.1016/j.crma.2011.07.008. http://www.numdam.org/articles/10.1016/j.crma.2011.07.008/
[1] Local well-posedness of nonlocal Burgers equations, Differential Integral Equations, Volume 22 (2009) no. 3–4, pp. 303-320
[2] Nonlinear surface waves, Contemp. Math., Volume 100 (1989), pp. 185-202
[3] Nonlinear surface waves on an elastic solid, Int. J. Engrg. Sci., Volume 21 (1983), pp. 1331-1342
[4] Rigorous weakly nonlinear geometric optics for surface waves, Asymptot. Anal., Volume 69 (2010), pp. 125-174
[5] Waveform evolution for nonlinear surface acoustic waves, Int. J. Engrg. Sci., Volume 26 (1988), pp. 59-75
[6] Analysis and computation for nonlinear elastic surface waves of permanent form, J. Elasticity, Volume 15 (1985) no. 4, pp. 389-426
Cité par Sources :