Nous présentons ici un nouveau modèle macroscopique de trafic piéton dans lequel chaque individu se dirige vers une cible fixe en déviant du plus court chemin en fonction de la distribution de la population. On obtient une loi de conservation avec flux non local qui génère un semi-groupe de solutions et est stable par rapport aux fonctions et paramètres quʼelle contient. On montre de plus que la densité reste bornée pour tout temps. On sʼintéresse plus particuliérement à deux modèles précis.
We present a new class of macroscopic models for pedestrian flows. Each individual is assumed to move toward a fixed target, deviating from the best path according to the crowd distribution. The resulting equation is a conservation law with a non-local flux. Each equation in this class generates a Lipschitz semigroup of solutions and is stable with respect to the functions and parameters defining it. Moreover, key qualitative properties such as the boundedness of the crowd density are proved. Two specific models in this class are considered.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_769_0, author = {Colombo, Rinaldo M. and Garavello, Mauro and L\'ecureux-Mercier, Magali}, title = {Non-local crowd dynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--772}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.07.005}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.07.005/} }
TY - JOUR AU - Colombo, Rinaldo M. AU - Garavello, Mauro AU - Lécureux-Mercier, Magali TI - Non-local crowd dynamics JO - Comptes Rendus. Mathématique PY - 2011 SP - 769 EP - 772 VL - 349 IS - 13-14 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.07.005/ DO - 10.1016/j.crma.2011.07.005 LA - en ID - CRMATH_2011__349_13-14_769_0 ER -
%0 Journal Article %A Colombo, Rinaldo M. %A Garavello, Mauro %A Lécureux-Mercier, Magali %T Non-local crowd dynamics %J Comptes Rendus. Mathématique %D 2011 %P 769-772 %V 349 %N 13-14 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.07.005/ %R 10.1016/j.crma.2011.07.005 %G en %F CRMATH_2011__349_13-14_769_0
Colombo, Rinaldo M.; Garavello, Mauro; Lécureux-Mercier, Magali. Non-local crowd dynamics. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 769-772. doi : 10.1016/j.crma.2011.07.005. https://www.numdam.org/articles/10.1016/j.crma.2011.07.005/
[1] A. Bressan, R.M. Colombo, P.D.E. models of pedestrian flow, unpublished, 2007.
[2] R.M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of non-local models for pedestrian traffic, preprint, , 2011. | HAL
[3] R.M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non-local flow, ESAIM: COCV, 2010.
[4] Stability and total variation estimates on general scalar balance laws, Commun. Math. Sci., Volume 7 (2009) no. 1, pp. 37-65
[5] Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., Volume 9 (2011) no. 1, pp. 155-182
[6] On the Hughesʼ model for pedestrian flow: The one-dimensional case, J. Differential Equations, Volume 250 (2011) no. 3, pp. 1334-1362
[7] Simulation of pedestrian crowds in normal and evacuation situations (Schreckenberg, M.; Sharma, S.D., eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin, 2002, pp. 21-58
[8] Pedestrian, crowd and evacuation dynamics, Encyclopedia of Complexity and Systems Science, 2010, pp. 6476-6495
[9] Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, Volume 24 (2003) no. 3, pp. 153-172
[10] A continuum theory for the flow of pedestrians, Transport. Res. Part B: Methodol., Volume 36 (2002) no. 6, pp. 507-535
[11] The flow of human crowds, Annu. Rev. Fluid Mech., Volume 35 (2003), pp. 169-182
[12] First order quasilinear equations with several independent variables, Mat. Sb., Volume 81 (1970) no. 123, pp. 228-255
[13] Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 707-738
- A system of continuity equations with nonlocal interactions of Morse type, Communications on Pure and Applied Analysis, Volume 24 (2025) no. 8, p. 1381 | DOI:10.3934/cpaa.2025041
- Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach, Journal of Differential Equations, Volume 430 (2025), p. 113205 | DOI:10.1016/j.jde.2025.02.076
- Dynamic pedestrian traffic assignment with link transmission model for bidirectional sidewalk networks, Transportation Research Part C: Emerging Technologies, Volume 145 (2022), p. 103930 | DOI:10.1016/j.trc.2022.103930
- Modeling of crowds in regions with moving obstacles, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 11, p. 5009 | DOI:10.3934/dcds.2021066
- Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, Vietnam Journal of Mathematics, Volume 49 (2021) no. 3, p. 957 | DOI:10.1007/s10013-021-00506-7
- On Traffic Flow with Nonlocal Flux: A Relaxation Representation, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 3, p. 1213 | DOI:10.1007/s00205-020-01529-z
- Stationary wave profiles for nonlocal particle models of traffic flow on rough roads, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 6 | DOI:10.1007/s00030-019-0601-7
- Particle methods for multi-group pedestrian flow, Applied Mathematical Modelling, Volume 53 (2018), p. 447 | DOI:10.1016/j.apm.2017.08.024
- Modeling occupancy and behavior for better building design and operation—A critical review, Building Simulation, Volume 11 (2018) no. 5, p. 899 | DOI:10.1007/s12273-018-0452-x
- Numerical Methods for Mean-Field and Moment Models for Pedestrian Flow, Crowd Dynamics, Volume 1 (2018), p. 167 | DOI:10.1007/978-3-030-05129-7_7
- A numerical investigation of flux-limited approximations for pedestrian dynamics, Mathematical Models and Methods in Applied Sciences, Volume 27 (2017) no. 06, p. 1177 | DOI:10.1142/s0218202517400127
- Sensitivity Analysis of the Local Route Choice Parameters of the Continuum Model Regarding Pedestrian Movement Phenomena, Traffic and Granular Flow '15 (2016), p. 153 | DOI:10.1007/978-3-319-33482-0_20
- Continuum theory for pedestrian traffic flow: Local route choice modelling and its implications, Transportation Research Part C: Emerging Technologies, Volume 59 (2015), p. 183 | DOI:10.1016/j.trc.2015.05.003
- Continuum Theory for Pedestrian Traffic Flow: Local Route Choice Modelling and its Implications, Transportation Research Procedia, Volume 7 (2015), p. 381 | DOI:10.1016/j.trpro.2015.06.020
- COUPLING TRAFFIC FLOW NETWORKS TO PEDESTRIAN MOTION, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 02, p. 359 | DOI:10.1142/s0218202513400113
- Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 12, p. 2503 | DOI:10.1142/s0218202514500274
- Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, Physica A: Statistical Mechanics and its Applications, Volume 416 (2014), p. 684 | DOI:10.1016/j.physa.2014.07.050
- , 2013 46th Hawaii International Conference on System Sciences (2013), p. 156 | DOI:10.1109/hicss.2013.155
Cité par 18 documents. Sources : Crossref